IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v29y2024i4d10.1007_s13253-024-00611-3.html
   My bibliography  Save this article

Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska

Author

Listed:
  • Andrew O. Finley

    (Michigan State University
    Michigan State University)

  • Hans-Erik Andersen

    (Pacific Northwest Research Station)

  • Chad Babcock

    (University of Minnesota)

  • Bruce D. Cook

    (Goddard Space Flight Center)

  • Douglas C. Morton

    (Goddard Space Flight Center)

  • Sudipto Banerjee

    (University of California)

Abstract

A two-stage hierarchical Bayesian model is developed and implemented to estimate forest biomass density and total given sparsely sampled LiDAR and georeferenced forest inventory plot measurements. The model is motivated by the United States Department of Agriculture (USDA) Forest Service Forest Inventory and Analysis (FIA) objective to provide biomass estimates for the remote Tanana Inventory Unit (TIU) in interior Alaska. The proposed model yields stratum-level biomass estimates for arbitrarily sized areas. Model-based estimates are compared with the TIU FIA design-based post-stratified estimates. Model-based small area estimates (SAEs) for two experimental forests within the TIU are compared with each forest’s design-based estimates generated using a dense network of independent inventory plots. Model parameter estimates and biomass predictions are informed using FIA plot measurements, LiDAR data that are spatially aligned with a subset of the FIA plots, and complete coverage remotely detected data used to define landuse/landcover stratum and percent forest canopy cover. Results support a model-based approach to estimating forest parameters when inventory data are sparse or resources limit collection of enough data to achieve desired accuracy and precision using design-based methods. Supplementary materials accompanying this paper appear on-line

Suggested Citation

  • Andrew O. Finley & Hans-Erik Andersen & Chad Babcock & Bruce D. Cook & Douglas C. Morton & Sudipto Banerjee, 2024. "Models to Support Forest Inventory and Small Area Estimation Using Sparsely Sampled LiDAR: A Case Study Involving G-LiHT LiDAR in Tanana, Alaska," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 695-722, December.
  • Handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-024-00611-3
    DOI: 10.1007/s13253-024-00611-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00611-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00611-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Finley, Andrew O. & Banerjee, Sudipto & MacFarlane, David W., 2011. "A Hierarchical Model for Quantifying Forest Variables Over Large Heterogeneous Landscapes With Uncertain Forest Areas," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 31-48.
    2. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    3. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    4. Little R.J., 2004. "To Model or Not To Model? Competing Modes of Inference for Finite Population Sampling," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 546-556, January.
    5. Alec M. Chan‐Golston & Sudipto Banerjee & Mark S. Handcock, 2020. "Bayesian inference for finite populations under spatial process settings," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
    6. Lu Zhang & Sudipto Banerjee, 2022. "Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data," Biometrics, The International Biometric Society, vol. 78(2), pages 560-573, June.
    7. Malay Ghosh, 2012. "Finite population sampling: a model-design synthesis," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 13(2), pages 235-242, June.
    8. Paul B. May & Andrew O. Finley & Ralph O. Dubayah, 2024. "A Spatial Mixture Model for Spaceborne Lidar Observations Over Mixed Forest and Non-forest Land Types," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 671-694, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    2. Lu Zhang & Sudipto Banerjee, 2022. "Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data," Biometrics, The International Biometric Society, vol. 78(2), pages 560-573, June.
    3. Lu Zhang & Sudipto Banerjee & Andrew O. Finley, 2021. "High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    4. Wang, Craig & Furrer, Reinhard, 2021. "Combining heterogeneous spatial datasets with process-based spatial fusion models: A unifying framework," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    5. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    6. Fassò, A. & Finazzi, F. & Madonna, F., 2018. "Statistical issues in radiosonde observation of atmospheric temperature and humidity profiles," Statistics & Probability Letters, Elsevier, vol. 136(C), pages 97-100.
    7. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    8. Little Roderick J., 2013. "Discussion," Journal of Official Statistics, Sciendo, vol. 29(3), pages 363-366, June.
    9. Kunihama, T. & Herring, A.H. & Halpern, C.T. & Dunson, D.B., 2016. "Nonparametric Bayes modeling with sample survey weights," Statistics & Probability Letters, Elsevier, vol. 113(C), pages 41-48.
    10. Marivoet, Wim & De Herdt, Tom, 2017. "From figures to facts: making sense of socio-economic surveys in the Democratic Republic of the Congo (DRC)," IOB Analyses & Policy Briefs 23, Universiteit Antwerpen, Institute of Development Policy (IOB).
    11. Pascal Kundig & Fabio Sigrist, 2024. "A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios," Papers 2410.02846, arXiv.org.
    12. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    13. Geoffrey Jones & Wesley O. Johnson, 2016. "A Bayesian Superpopulation Approach to Inference for Finite Populations Based on Imperfect Diagnostic Outcomes," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(2), pages 314-327, June.
    14. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    15. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    16. J. Andrew Royle, 2009. "Analysis of Capture–Recapture Models with Individual Covariates Using Data Augmentation," Biometrics, The International Biometric Society, vol. 65(1), pages 267-274, March.
    17. Marchetti, Yuliya & Nguyen, Hai & Braverman, Amy & Cressie, Noel, 2018. "Spatial data compression via adaptive dispersion clustering," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 138-153.
    18. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    19. David Kaplan & Chansoon Lee, 2018. "Optimizing Prediction Using Bayesian Model Averaging: Examples Using Large-Scale Educational Assessments," Evaluation Review, , vol. 42(4), pages 423-457, August.
    20. Santos-Fernandez, Edgar & Ver Hoef, Jay M. & Peterson, Erin E. & McGree, James & Isaak, Daniel J. & Mengersen, Kerrie, 2022. "Bayesian spatio-temporal models for stream networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:29:y:2024:i:4:d:10.1007_s13253-024-00611-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.