IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i3p645-666.html
   My bibliography  Save this article

Bayesian modelling for spatially misaligned health areal data: A multiple membership approach

Author

Listed:
  • Marco Gramatica
  • Peter Congdon
  • Silvia Liverani

Abstract

Diabetes prevalence is on the rise in the United Kingdom, and for public health strategy, estimation of relative disease risk and subsequent mapping is important. We consider an application to London data on diabetes prevalence and mortality. In order to improve the estimation of relative risks, we analyse jointly prevalence and mortality data to ensure borrowing strength over the two outcomes. The available data involve two spatial frameworks, areas (Middle Layer Super Output Areas, MSOAs) and general practices (GPs) recruiting patients from several areas. This raises a spatial misalignment issue that we deal with by employing the multiple membership principle. Specifically, we translate areal spatial effects to explain GP practice prevalence according to proportions of GP populations resident in different areas. A sparse implementation in RStan of both the multivariate conditional autoregressive (MCAR) and generalised MCAR (GMCAR) with multiple membership allows the comparison of these bivariate priors as well as exploring the different implications for the mapping patterns for both outcomes. The necessary causal precedence of diabetes prevalence over mortality allows a specific conditionality assumption in the GMCAR, not always present in the context of disease mapping. Additionally, an area‐locality comparison is considered to locate high versus low relative risk clusters.

Suggested Citation

  • Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:3:p:645-666
    DOI: 10.1111/rssc.12480
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12480
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    2. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    3. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    4. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    5. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    6. Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2016. "Bayesian Spatial Change of Support for Count-Valued Survey Data With Application to the American Community Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 472-487, April.
    7. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    8. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    2. Cindy Xin Feng, 2015. "Bayesian joint modeling of correlated counts data with application to adverse birth outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1206-1222, June.
    3. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    4. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    5. Ippoliti, L. & Martin, R.J. & Romagnoli, L., 2018. "Efficient likelihood computations for some multivariate Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 185-200.
    6. Susanne Gschlößl & Claudia Czado, 2008. "Modelling count data with overdispersion and spatial effects," Statistical Papers, Springer, vol. 49(3), pages 531-552, July.
    7. Kramer, Michael R. & Cooper, Hannah L. & Drews-Botsch, Carolyn D. & Waller, Lance A. & Hogue, Carol R., 2010. "Metropolitan isolation segregation and Black-White disparities in very preterm birth: A test of mediating pathways and variance explained," Social Science & Medicine, Elsevier, vol. 71(12), pages 2108-2116, December.
    8. Federico ANDREIS & Pier Alda FERRARI, 2015. "Customer Satisfaction Evaluation Using Multidimensional Item Response Theory Models," Departmental Working Papers 2015-25, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    9. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    10. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    11. Brook T. Russell & Whitney K. Huang, 2021. "Modeling short‐ranged dependence in block extrema with application to polar temperature data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
    12. Greves Grow, H. Mollie & Cook, Andrea J. & Arterburn, David E. & Saelens, Brian E. & Drewnowski, Adam & Lozano, Paula, 2010. "Child obesity associated with social disadvantage of children's neighborhoods," Social Science & Medicine, Elsevier, vol. 71(3), pages 584-591, August.
    13. Mahmoud Torabi, 2014. "Hierarchical Bayesian bivariate disease mapping: analysis of children and adults asthma visits to hospital," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 612-621, March.
    14. Laura A. Hatfield & Steve Gutreuter & Michael A. Boogaard & Bradley P. Carlin, 2011. "Multilevel Empirical Bayes Modeling for Improved Estimation of Toxicant Formulations to Suppress Parasitic Sea Lamprey in the Upper Great Lakes," Biometrics, The International Biometric Society, vol. 67(3), pages 1153-1162, September.
    15. Marc K. Francke & Alex Minne, 2017. "The Hierarchical Repeat Sales Model for Granular Commercial Real Estate and Residential Price Indices," The Journal of Real Estate Finance and Economics, Springer, vol. 55(4), pages 511-532, November.
    16. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    17. Andrea Gilardi & Jorge Mateu & Riccardo Borgoni & Robin Lovelace, 2022. "Multivariate hierarchical analysis of car crashes data considering a spatial network lattice," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1150-1177, July.
    18. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    19. Divan A. Burger & Sean van der Merwe & Emmanuel Lesaffre & Peter C. le Roux & Morgan J. Raath‐Krüger, 2023. "A robust mixed‐effects parametric quantile regression model for continuous proportions: Quantifying the constraints to vitality in cushion plants," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(4), pages 444-470, November.
    20. Ying C. MacNab, 2023. "On coregionalized multivariate Gaussian Markov random fields: construction, parameterization, and Bayesian estimation and inference," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 263-293, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:3:p:645-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.