IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v70y2021i3p645-666.html
   My bibliography  Save this article

Bayesian modelling for spatially misaligned health areal data: A multiple membership approach

Author

Listed:
  • Marco Gramatica
  • Peter Congdon
  • Silvia Liverani

Abstract

Diabetes prevalence is on the rise in the United Kingdom, and for public health strategy, estimation of relative disease risk and subsequent mapping is important. We consider an application to London data on diabetes prevalence and mortality. In order to improve the estimation of relative risks, we analyse jointly prevalence and mortality data to ensure borrowing strength over the two outcomes. The available data involve two spatial frameworks, areas (Middle Layer Super Output Areas, MSOAs) and general practices (GPs) recruiting patients from several areas. This raises a spatial misalignment issue that we deal with by employing the multiple membership principle. Specifically, we translate areal spatial effects to explain GP practice prevalence according to proportions of GP populations resident in different areas. A sparse implementation in RStan of both the multivariate conditional autoregressive (MCAR) and generalised MCAR (GMCAR) with multiple membership allows the comparison of these bivariate priors as well as exploring the different implications for the mapping patterns for both outcomes. The necessary causal precedence of diabetes prevalence over mortality allows a specific conditionality assumption in the GMCAR, not always present in the context of disease mapping. Additionally, an area‐locality comparison is considered to locate high versus low relative risk clusters.

Suggested Citation

  • Marco Gramatica & Peter Congdon & Silvia Liverani, 2021. "Bayesian modelling for spatially misaligned health areal data: A multiple membership approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 645-666, June.
  • Handle: RePEc:bla:jorssc:v:70:y:2021:i:3:p:645-666
    DOI: 10.1111/rssc.12480
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssc.12480
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssc.12480?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mardia, K. V., 1988. "Multi-dimensional multivariate Gaussian Markov random fields with application to image processing," Journal of Multivariate Analysis, Elsevier, vol. 24(2), pages 265-284, February.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.
    4. Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    7. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    8. Jonathan R. Bradley & Christopher K. Wikle & Scott H. Holan, 2016. "Bayesian Spatial Change of Support for Count-Valued Survey Data With Application to the American Community Survey," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 472-487, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    2. Cindy Xin Feng, 2015. "Bayesian joint modeling of correlated counts data with application to adverse birth outcomes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1206-1222, June.
    3. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    4. Xiaoping Jin & Sudipto Banerjee & Bradley P. Carlin, 2007. "Order‐free co‐regionalized areal data models with application to multiple‐disease mapping," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 817-838, November.
    5. Ippoliti, L. & Martin, R.J. & Romagnoli, L., 2018. "Efficient likelihood computations for some multivariate Gaussian Markov random fields," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 185-200.
    6. Liang, Zhongyao & Qian, Song S. & Wu, Sifeng & Chen, Huili & Liu, Yong & Yu, Yanhong & Yi, Xuan, 2019. "Using Bayesian change point model to enhance understanding of the shifting nutrients-phytoplankton relationship," Ecological Modelling, Elsevier, vol. 393(C), pages 120-126.
    7. David M. Phillippo & Sofia Dias & A. E. Ades & Mark Belger & Alan Brnabic & Alexander Schacht & Daniel Saure & Zbigniew Kadziola & Nicky J. Welton, 2020. "Multilevel network meta‐regression for population‐adjusted treatment comparisons," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1189-1210, June.
    8. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    9. Zhao, Qing & Boomer, G. Scott & Silverman, Emily & Fleming, Kathy, 2017. "Accounting for the temporal variation of spatial effect improves inference and projection of population dynamics models," Ecological Modelling, Elsevier, vol. 360(C), pages 252-259.
    10. Brian J. Reich & James S. Hodges, 2008. "Modeling Longitudinal Spatial Periodontal Data: A Spatially Adaptive Model with Tools for Specifying Priors and Checking Fit," Biometrics, The International Biometric Society, vol. 64(3), pages 790-799, September.
    11. Song, J.J. & Ghosh, M. & Miaou, S. & Mallick, B., 2006. "Bayesian multivariate spatial models for roadway traffic crash mapping," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 246-273, January.
    12. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.
    13. Earl W Duncan & Kerrie L Mengersen, 2020. "Comparing Bayesian spatial models: Goodness-of-smoothing criteria for assessing under- and over-smoothing," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-28, May.
    14. repec:jss:jstsof:40:i05 is not listed on IDEAS
    15. Qingfang Liu & Yao Zhao & Sumedha Attanti & Joel L. Voss & Geoffrey Schoenbaum & Thorsten Kahnt, 2024. "Midbrain signaling of identity prediction errors depends on orbitofrontal cortex networks," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Manuguerra Maurizio & Heller Gillian Z, 2010. "Ordinal Regression Models for Continuous Scales," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, April.
    17. Peng Zhang & Juxin Liu & Jianghu Dong & Jelena L. Holovati & Brenda Letcher & Locksley E. McGann, 2012. "A Bayesian Adjustment for Multiplicative Measurement Errors for a Calibration Problem with Application to a Stem Cell Study," Biometrics, The International Biometric Society, vol. 68(1), pages 268-274, March.
    18. Moraga, Paula & Lawson, Andrew B., 2012. "Gaussian component mixtures and CAR models in Bayesian disease mapping," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1417-1433.
    19. Iain Pardoe & Dean K. Simonton, 2008. "Applying discrete choice models to predict Academy Award winners," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 375-394, April.
    20. Areti Boulieri & Silvia Liverani & Kees Hoogh & Marta Blangiardo, 2017. "A space–time multivariate Bayesian model to analyse road traffic accidents by severity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 119-139, January.
    21. Xiaoping Jin & Bradley P. Carlin & Sudipto Banerjee, 2005. "Generalized Hierarchical Multivariate CAR Models for Areal Data," Biometrics, The International Biometric Society, vol. 61(4), pages 950-961, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:70:y:2021:i:3:p:645-666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.