IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v31y2020i3ne2606.html
   My bibliography  Save this article

Bayesian inference for finite populations under spatial process settings

Author

Listed:
  • Alec M. Chan‐Golston
  • Sudipto Banerjee
  • Mark S. Handcock

Abstract

We develop a Bayesian model–based approach to finite population estimation accounting for spatial dependence. Our innovation here is a framework that achieves inference for finite population quantities in spatial process settings. A key distinction from the small area estimation setting is that we analyze finite populations referenced by their geographic coordinates. Specifically, we consider a two‐stage sampling design in which the primary units are geographic regions, the secondary units are point‐referenced locations, and the measured values are assumed to be a partial realization of a spatial process. Estimation of finite population quantities from geostatistical models does not account for sampling designs, which can impair inferential performance, whereas design‐based estimates ignore the spatial dependence in the finite population. We demonstrate by using simulation experiments that process‐based finite population sampling models improve model fit and inference over models that fail to account for spatial correlation. Furthermore, the process‐based models offer richer inference with spatially interpolated maps over the entire region. We reinforce these improvements and demonstrate scalable inference for groundwater nitrate levels in the population of California Central Valley wells by offering estimates of mean nitrate levels and their spatially interpolated maps.

Suggested Citation

  • Alec M. Chan‐Golston & Sudipto Banerjee & Mark S. Handcock, 2020. "Bayesian inference for finite populations under spatial process settings," Environmetrics, John Wiley & Sons, Ltd., vol. 31(3), May.
  • Handle: RePEc:wly:envmet:v:31:y:2020:i:3:n:e2606
    DOI: 10.1002/env.2606
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2606
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matt Higham & Jay Ver Hoef & Lisa Madsen & Andy Aderman, 2021. "Adjusting a finite population block kriging estimator for imperfect detection," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:31:y:2020:i:3:n:e2606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.