IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i1p169-192.html
   My bibliography  Save this article

Spatial hedonic modelling adjusted for preferential sampling

Author

Listed:
  • Lucia Paci
  • Alan E. Gelfand
  • and María Asunción Beamonte
  • Pilar Gargallo
  • Manuel Salvador

Abstract

Hedonic models are widely used to predict selling prices of properties. Originally, they were proposed as simple spatial regressions, i.e. a spatially referenced response regressed on spatially referenced predictors. Subsequently, spatial random effects were introduced to serve as surrogates for unmeasured or unobservable predictors and were shown to provide better out‐of‐sample prediction. However, what has been ignored in the literature is the fact that the locations (and times) of the sales are random and, in fact, are an observation of a random point pattern. Here, we first consider whether there is stochastic dependence between the point pattern of locations and the set of responses. If so, a second question is whether incorporating a log‐intensity for the point pattern of locations in the hedonic modelling enables improvement in the prediction of selling price. We connect this problem to what is referred to as preferential sampling. Through model comparison we illuminate the role of the point pattern data in the prediction of selling price. Using two different years of property sales from Zaragoza, Spain, we employ both the full database as well as an intentionally biased subset to elaborate this story.

Suggested Citation

  • Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:1:p:169-192
    DOI: 10.1111/rssa.12489
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12489
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriel M. Ahlfeldt & Georgios Kavetsos, 2014. "Form or function?: the effect of new sports stadia on property prices in London," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(1), pages 169-190, January.
    2. Libertad Gonzalez & Francesc Ortega, 2013. "Immigration And Housing Booms: Evidence From Spain," Journal of Regional Science, Wiley Blackwell, vol. 53(1), pages 37-59, February.
    3. Duncan Lee & Claire Ferguson & E. Marian Scott, 2011. "Constructing representative air quality indicators with measures of uncertainty," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(1), pages 109-126, January.
    4. Dubin, Robin A, 1988. "Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms," The Review of Economics and Statistics, MIT Press, vol. 70(3), pages 466-474, August.
    5. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    6. Gelfand, Alan E, et al, 1998. "Spatio-Temporal Modeling of Residential Sales Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 312-321, July.
    7. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    8. Alan E. Gelfand & Sujit K. Sahu & David M. Holland, 2012. "On the effect of preferential sampling in spatial prediction," Environmetrics, John Wiley & Sons, Ltd., vol. 23(7), pages 565-578, November.
    9. Mingche M. Li & H. James Brown, 1980. "Micro-Neighborhood Externalities and Hedonic Housing Prices," Land Economics, University of Wisconsin Press, vol. 56(2), pages 125-141.
    10. Peter J. Diggle & Raquel Menezes & Ting‐li Su, 2010. "Geostatistical inference under preferential sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 191-232, March.
    11. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    12. A. Lee & A. Szpiro & S.Y. Kim & L. Sheppard, 2015. "Impact of preferential sampling on exposure prediction and health effect inference in the context of air pollution epidemiology," Environmetrics, John Wiley & Sons, Ltd., vol. 26(4), pages 255-267, June.
    13. Basu, Sabyasachi & Thibodeau, Thomas G, 1998. "Analysis of Spatial Autocorrelation in House Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 61-85, July.
    14. Michael L. Stein & Zhiyi Chi & Leah J. Welty, 2004. "Approximating likelihoods for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 275-296, May.
    15. Dubin, Robin A. & Sung, Chein-Hsing, 1990. "Specification of hedonic regressions: Non-nested tests on measures of neighborhood quality," Journal of Urban Economics, Elsevier, vol. 27(1), pages 97-110, January.
    16. D. Pati & B. J. Reich & D. B. Dunson, 2011. "Bayesian geostatistical modelling with informative sampling locations," Biometrika, Biometrika Trust, vol. 98(1), pages 35-48.
    17. Luc Anselin & Nancy Lozano-Gracia, 2009. "Spatial Hedonic Models," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 26, pages 1213-1250, Palgrave Macmillan.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eduardo Pérez-Molina, 2022. "Exploring a multilevel approach with spatial effects to model housing price in San José, Costa Rica," Environment and Planning B, , vol. 49(3), pages 987-1004, March.
    2. Eduardo Pérez-Molina, 2024. "Understanding the spatial statistical properties of a real estate listings point pattern in San José, Costa Rica," Environment and Planning B, , vol. 51(5), pages 1124-1136, June.
    3. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Conroy & Lance A. Waller & Ian D. Buller & Gregory M. Hacker & James R. Tucker & Mark G. Novak, 2023. "A Shared Latent Process Model to Correct for Preferential Sampling in Disease Surveillance Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 483-501, September.
    2. André Victor Ribeiro Amaral & Elias Teixeira Krainski & Ruiman Zhong & Paula Moraga, 2024. "Model-Based Geostatistics Under Spatially Varying Preferential Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 766-792, December.
    3. Hua Sun & Yong Tu & Shi-Ming Yu, 2005. "A Spatio-Temporal Autoregressive Model for Multi-Unit Residential Market Analysis," The Journal of Real Estate Finance and Economics, Springer, vol. 31(2), pages 155-187, September.
    4. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    5. Aubry, Philippe & Francesiaz, Charlotte & Guillemain, Matthieu, 2024. "On the impact of preferential sampling on ecological status and trend assessment," Ecological Modelling, Elsevier, vol. 492(C).
    6. Delores Conway & Christina Li & Jennifer Wolch & Christopher Kahle & Michael Jerrett, 2010. "A Spatial Autocorrelation Approach for Examining the Effects of Urban Greenspace on Residential Property Values," The Journal of Real Estate Finance and Economics, Springer, vol. 41(2), pages 150-169, August.
    7. C. Forlani & S. Bhatt & M. Cameletti & E. Krainski & M. Blangiardo, 2020. "A joint Bayesian space–time model to integrate spatially misaligned air pollution data in R‐INLA," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    8. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    9. Julia Koschinsky & Nancy Lozano-Gracia & Gianfranco Piras, 2012. "The welfare benefit of a home’s location: an empirical comparison of spatial and non-spatial model estimates," Journal of Geographical Systems, Springer, vol. 14(3), pages 319-356, July.
    10. Si Cheng & Bledar A. Konomi & Georgios Karagiannis & Emily L. Kang, 2024. "Recursive nearest neighbor co‐kriging models for big multi‐fidelity spatial data sets," Environmetrics, John Wiley & Sons, Ltd., vol. 35(4), June.
    11. repec:asg:wpaper:1013 is not listed on IDEAS
    12. Erin M. Schliep & Christopher K. Wikle & Ranadeep Daw, 2023. "Correcting for informative sampling in spatial covariance estimation and kriging predictions," Journal of Geographical Systems, Springer, vol. 25(4), pages 587-613, October.
    13. Brian J. Reich & Howard H. Chang & Kristen M. Foley, 2014. "A spectral method for spatial downscaling," Biometrics, The International Biometric Society, vol. 70(4), pages 932-942, December.
    14. Bledar A. Konomi & Emily L. Kang & Ayat Almomani & Jonathan Hobbs, 2023. "Bayesian Latent Variable Co-kriging Model in Remote Sensing for Quality Flagged Observations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(3), pages 423-441, September.
    15. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.
    16. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    17. Lu Zhang & Sudipto Banerjee & Andrew O. Finley, 2021. "High‐dimensional multivariate geostatistics: A Bayesian matrix‐normal approach," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    18. Are Oust & Simen N. Hansen & Tobias R. Pettrem, 2020. "Combining Property Price Predictions from Repeat Sales and Spatially Enhanced Hedonic Regressions," The Journal of Real Estate Finance and Economics, Springer, vol. 61(2), pages 183-207, August.
    19. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    20. Orçun Moralı & Neslihan Yılmaz, 2022. "An Analysis of Spatial Dependence in Real Estate Prices," The Journal of Real Estate Finance and Economics, Springer, vol. 64(1), pages 93-115, January.
    21. Thomas M. Fullerton & Arturo Bujanda, 2018. "Commercial property values in a border metropolitan economy," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 337-360, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:1:p:169-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.