Mixed-Effects Estimation in Dynamic Models of Plant Growth for the Assessment of Inter-individual Variability
Author
Abstract
Suggested Citation
DOI: 10.1007/s13253-017-0307-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
- Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
- Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
- Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- D. Logothetis & S. Malefaki & S. Trevezas & P.-H. Cournède, 2022. "Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 63-87, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
- Solène Desmée & France Mentré & Christine Veyrat-Follet & Bernard Sébastien & Jérémie Guedj, 2017. "Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients," Biometrics, The International Biometric Society, vol. 73(1), pages 305-312, March.
- Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022.
"On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de,"
Working Papers
hal-03639951, HAL.
- Ibirénoyé Honoré Romaric Sodjahin & Fabienne Femenia & Obafémi Philippe Koutchade & Alain Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Working Papers SMART 22-02, INRAE UMR SMART.
- Sodjahin, Ibirénoyé Honoré Romaric & Féménia, Fabienne & Koutchade, Obafémi Philippe & Carpentier, Alain, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Working Papers 320398, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
- Valdemar Melicher & Tom Haber & Wim Vanroose, 2017. "Fast derivatives of likelihood functionals for ODE based models using adjoint-state method," Computational Statistics, Springer, vol. 32(4), pages 1621-1643, December.
- Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
- Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
- Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
- Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
- Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
- Ollier, Edouard & Samson, Adeline & Delavenne, Xavier & Viallon, Vivian, 2016. "A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: Application to group comparison in pharmacokinetics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 207-221.
- Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2014. "Parametrization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass," Ecological Modelling, Elsevier, vol. 290(C), pages 11-20.
- Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012.
"Computing and estimating information matrices of weak ARMA models,"
Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
- Boubacar Mainassara, Yacouba & Carbon, Michel & Francq, Christian, 2010. "Computing and estimating information matrices of weak arma models," MPRA Paper 27685, University Library of Munich, Germany.
- Fu, Eric & Heckman, Nancy, 2019. "Model-based curve registration via stochastic approximation EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 159-175.
- Munch, Jakob R. & Nguyen, Daniel X., 2014.
"Decomposing firm-level sales variation,"
Journal of Economic Behavior & Organization, Elsevier, vol. 106(C), pages 317-334.
- Jakob R. Munch & Daniel X., 2008. "Decomposing Firm-level Sales Variation," EPRU Working Paper Series 2009-05, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics, revised Jun 2009.
- Larissa A. Matos & Víctor H. Lachos & Tsung-I Lin & Luis M. Castro, 2019. "Heavy-tailed longitudinal regression models for censored data: a robust parametric approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 844-878, September.
- Kim, Seong-Joon & Mun, Byeong Min & Bae, Suk Joo, 2019. "A cost-driven reliability demonstration plan based on accelerated degradation tests," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 226-239.
- Allassonnière, Stéphanie & Chevallier, Juliette, 2021. "A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Baey, Charlotte & Cournède, Paul-Henry & Kuhn, Estelle, 2019. "Asymptotic distribution of likelihood ratio test statistics for variance components in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 107-122.
- Daniel B. Reeves & Christian Gaebler & Thiago Y. Oliveira & Michael J. Peluso & Joshua T. Schiffer & Lillian B. Cohn & Steven G. Deeks & Michel C. Nussenzweig, 2023. "Impact of misclassified defective proviruses on HIV reservoir measurements," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
- Elson Tomás & Susana Vinga & Alexandra M. Carvalho, 2017. "Unsupervised learning of pharmacokinetic responses," Computational Statistics, Springer, vol. 32(2), pages 409-428, June.
More about this item
Keywords
Brassica napus; GreenLab model; Inter-individual variability; MCMC; Nonlinear mixed model; nlme; Population model; SAEM algorithm; Winter oilseed rape; WOSR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:2:d:10.1007_s13253-017-0307-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.