IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v23y2018i2d10.1007_s13253-017-0307-4.html
   My bibliography  Save this article

Mixed-Effects Estimation in Dynamic Models of Plant Growth for the Assessment of Inter-individual Variability

Author

Listed:
  • Charlotte Baey

    (Laboratoire Paul Painlevé, Université de Lille, Cité Scientifique)

  • Amélie Mathieu

    (Université Paris-Saclay)

  • Alexandra Jullien

    (Université Paris-Saclay)

  • Samis Trevezas

    (National and Kapodistrian University of Athens)

  • Paul-Henry Cournède

    (Université Paris-Saclay, Grande Voie des Vignes)

Abstract

Modeling inter-individual variability in plant populations is a key issue to understand crop heterogeneity and its variations in response to the environment. Being able to describe the interactions among plants and explain the variability observed in the population could provide useful information on how to control it and improve global plant growth. We propose here a method to model plant variability within a field, by extending the so-called GreenLab functional-structural plant model from the individual to the population scale via nonlinear mixed-effects modeling. Parameter estimation of the population model is achieved using the stochastic approximation expectation maximization algorithm, implemented in the platform for plant growth modeling and analysis PyGMAlion. The method is first applied on a set of simulated data and then on a real dataset from a population of 34 winter oilseed rape plants at the rosette stage. Results show that our method allows for a good characterization of the variability in the population with only a limited number of parameters, which is a key point for plant models. Results on simulated data show that parameters associated with a low sensitivity index are inaccurately estimated by the algorithm when considered as random effects, but a good stability of the results can be obtained by considering them as fixed effects. These results open new ways for the analysis of inter-plant variability within a population and the study of plant–plant competition.Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Charlotte Baey & Amélie Mathieu & Alexandra Jullien & Samis Trevezas & Paul-Henry Cournède, 2018. "Mixed-Effects Estimation in Dynamic Models of Plant Growth for the Assessment of Inter-individual Variability," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 208-232, June.
  • Handle: RePEc:spr:jagbes:v:23:y:2018:i:2:d:10.1007_s13253-017-0307-4
    DOI: 10.1007/s13253-017-0307-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-017-0307-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-017-0307-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    2. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    3. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    4. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Logothetis & S. Malefaki & S. Trevezas & P.-H. Cournède, 2022. "Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 63-87, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    2. Solène Desmée & France Mentré & Christine Veyrat-Follet & Bernard Sébastien & Jérémie Guedj, 2017. "Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients," Biometrics, The International Biometric Society, vol. 73(1), pages 305-312, March.
    3. Mélanie Prague & Daniel Commenges & Jon Michael Gran & Bruno Ledergerber & Jim Young & Hansjakob Furrer & Rodolphe Thiébaut, 2017. "Dynamic models for estimating the effect of HAART on CD4 in observational studies: Application to the Aquitaine Cohort and the Swiss HIV Cohort Study," Biometrics, The International Biometric Society, vol. 73(1), pages 294-304, March.
    4. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    5. Wang, Xiaoning & Schumitzky, Alan & D'Argenio, David Z., 2007. "Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6614-6623, August.
    6. Valdemar Melicher & Tom Haber & Wim Vanroose, 2017. "Fast derivatives of likelihood functionals for ODE based models using adjoint-state method," Computational Statistics, Springer, vol. 32(4), pages 1621-1643, December.
    7. Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    8. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    9. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    10. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    11. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    12. Samson, Adeline & Lavielle, Marc & Mentre, France, 2006. "Extension of the SAEM algorithm to left-censored data in nonlinear mixed-effects model: Application to HIV dynamics model," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1562-1574, December.
    13. Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
    14. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    15. Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
    16. Ollier, Edouard & Samson, Adeline & Delavenne, Xavier & Viallon, Vivian, 2016. "A SAEM algorithm for fused lasso penalized NonLinear Mixed Effect Models: Application to group comparison in pharmacokinetics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 207-221.
    17. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2014. "Parametrization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass," Ecological Modelling, Elsevier, vol. 290(C), pages 11-20.
    18. Boubacar Mainassara, Y. & Carbon, M. & Francq, C., 2012. "Computing and estimating information matrices of weak ARMA models," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 345-361.
    19. D. Logothetis & S. Malefaki & S. Trevezas & P.-H. Cournède, 2022. "Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 63-87, March.
    20. Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & Thiébaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:23:y:2018:i:2:d:10.1007_s13253-017-0307-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.