IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v78y2014icp82-99.html
   My bibliography  Save this article

Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling

Author

Listed:
  • Trevezas, S.
  • Malefaki, S.
  • Cournède, P.-H.

Abstract

Mathematical modeling of plant growth has gained increasing interest in recent years due to its potential applications. A general family of models, known as functional–structural plant models (FSPMs) and formalized as dynamic systems, serves as the basis for the current study. Modeling, parameterization and estimation are very challenging problems due to the complicated mechanisms involved in plant evolution. A specific type of a non-homogeneous hidden Markov model has been proposed as an extension of the GreenLab FSPM to study a certain class of plants with known organogenesis. In such a model, the maximum likelihood estimator cannot be derived explicitly. Thus, a stochastic version of an expectation conditional maximization (ECM) algorithm was adopted, where the E-step was approximated by sequential importance sampling with resampling (SISR). The complexity of the E-step creates the need for the design and the comparison of different simulation methods for its approximation. In this direction, three variants of SISR and a Markov Chain Monte Carlo (MCMC) approach are compared for their efficiency in parameter estimation on simulated and real sugar beet data, where observations are taken by censoring plant’s evolution (destructive measurements). The MCMC approach seems to be more efficient for this particular application context and also for a large variety of crop plants. Moreover, a data-driven automated MCMC–ECM algorithm for finding an appropriate sample size in each ECM step and also an appropriate number of ECM steps is proposed. Based on the available real dataset, some competing models are compared via model selection techniques.

Suggested Citation

  • Trevezas, S. & Malefaki, S. & Cournède, P.-H., 2014. "Parameter estimation via stochastic variants of the ECM algorithm with applications to plant growth modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 82-99.
  • Handle: RePEc:eee:csdana:v:78:y:2014:i:c:p:82-99
    DOI: 10.1016/j.csda.2014.04.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314001005
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.04.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, Galin L. & Haran, Murali & Caffo, Brian S. & Neath, Ronald, 2006. "Fixed-Width Output Analysis for Markov Chain Monte Carlo," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1537-1547, December.
    2. Kang, M.Z. & Cournède, P.H. & de Reffye, P. & Auclair, D. & Hu, B.G., 2008. "Analytical study of a stochastic plant growth model: Application to the GreenLab model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(1), pages 57-75.
    3. Jank, Wolfgang, 2005. "Quasi-Monte Carlo sampling to improve the efficiency of Monte Carlo EM," Computational Statistics & Data Analysis, Elsevier, vol. 48(4), pages 685-701, April.
    4. Bengtsson, Thomas & Cavanaugh, Joseph E., 2006. "An improved Akaike information criterion for state-space model selection," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2635-2654, June.
    5. J. G. Booth & J. P. Hobert, 1999. "Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 265-285.
    6. Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent‐based Monte Carlo expectation– maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251, April.
    7. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charlotte Baey & Amélie Mathieu & Alexandra Jullien & Samis Trevezas & Paul-Henry Cournède, 2018. "Mixed-Effects Estimation in Dynamic Models of Plant Growth for the Assessment of Inter-individual Variability," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 208-232, June.
    2. Yuting Chen & Samis Trevezas & Paul-Henry Cournède, 2015. "A Regularized Particle Filter EM Algorithm Based on Gaussian Randomization with an Application to Plant Growth Modeling," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 847-870, December.
    3. D. Logothetis & S. Malefaki & S. Trevezas & P.-H. Cournède, 2022. "Bayesian Estimation for the GreenLab Plant Growth Model with Deterministic Organogenesis," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(1), pages 63-87, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allassonnière, Stéphanie & Chevallier, Juliette, 2021. "A new class of stochastic EM algorithms. Escaping local maxima and handling intractable sampling," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
    2. Koutchade, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modeling of production decisions of heterogeneous farmers with random parameter models," Working Papers 210097, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    3. Gonzalez, Jorge & Tuerlinckx, Francis & De Boeck, Paul & Cools, Ronald, 2006. "Numerical integration in logistic-normal models," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1535-1548, December.
    4. Koutchadé, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modelling of production decisions of heterogeneous farmers with mixed models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205098, Agricultural and Applied Economics Association.
    5. Koutchade, Philippe & Carpentier, Alain & Femenia, Fabienne, 2015. "Accounting for unobserved heterogeneity in micro-econometric agricultural production models: a random parameter approach," 2015 Conference, August 9-14, 2015, Milan, Italy 212015, International Association of Agricultural Economists.
    6. Sik-Yum Lee & Xin-Yuan Song, 2007. "A Unified Maximum Likelihood Approach for Analyzing Structural Equation Models With Missing Nonstandard Data," Sociological Methods & Research, , vol. 35(3), pages 352-381, February.
    7. Wang, Yong, 2010. "Fisher scoring: An interpolation family and its Monte Carlo implementations," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1744-1755, July.
    8. Y. K. Tseng & Y. R. Su & M. Mao & J. L. Wang, 2015. "An extended hazard model with longitudinal covariates," Biometrika, Biometrika Trust, vol. 102(1), pages 135-150.
    9. Christian E. Galarza & Luis M. Castro & Francisco Louzada & Victor H. Lachos, 2020. "Quantile regression for nonlinear mixed effects models: a likelihood based perspective," Statistical Papers, Springer, vol. 61(3), pages 1281-1307, June.
    10. Li Cai, 2010. "High-dimensional Exploratory Item Factor Analysis by A Metropolis–Hastings Robbins–Monro Algorithm," Psychometrika, Springer;The Psychometric Society, vol. 75(1), pages 33-57, March.
    11. F. Y. Kuo & W. T. M. Dunsmuir & I. H. Sloan & M. P. Wand & R. S. Womersley, 2008. "Quasi-Monte Carlo for Highly Structured Generalised Response Models," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 239-275, June.
    12. Elff, Martin & Heisig, Jan Paul & Schaeffer, Merlin & Shikano, Susumu, 2016. "No Need to Turn Bayesian in Multilevel Analysis with Few Clusters: How Frequentist Methods Provide Unbiased Estimates and Accurate Inference," SocArXiv z65s4, Center for Open Science.
    13. Wang, Jing, 2007. "EM algorithms for nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 3244-3256, March.
    14. Hamdy F. F. Mahmoud & Inyoung Kim, 2023. "Semiparametric Integrated and Additive Spatio-Temporal Single-Index Models," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
    15. Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
    16. Shu Yang & Jae Kwang Kim, 2016. "Likelihood-based Inference with Missing Data Under Missing-at-Random," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 436-454, June.
    17. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    18. Tatiyana V. Apanasovich & David Ruppert & Joanne R. Lupton & Natasa Popovic & Nancy D. Turner & Robert S. Chapkin & Raymond J. Carroll, 2008. "Aberrant Crypt Foci and Semiparametric Modeling of Correlated Binary Data," Biometrics, The International Biometric Society, vol. 64(2), pages 490-500, June.
    19. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate stochastic volatility with co-heteroscedasticity," CAMA Working Papers 2018-52, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    20. Johnson, Alicia A. & Jones, Galin L., 2015. "Geometric ergodicity of random scan Gibbs samplers for hierarchical one-way random effects models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 325-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:78:y:2014:i:c:p:82-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.