IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04667088.html
   My bibliography  Save this paper

On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data

Author

Listed:
  • Ibirénoyé Honoré Romaric Sodjahin

    (SMART - Structures et Marché Agricoles, Ressources et Territoires - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Rennes Angers - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Fabienne Femenia

    (SMART - Structures et Marché Agricoles, Ressources et Territoires - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Rennes Angers - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Obafémi, Philippe Koutchadé

    (SMART - Structures et Marché Agricoles, Ressources et Territoires - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Rennes Angers - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

  • Alain Carpentier

    (SMART - Structures et Marché Agricoles, Ressources et Territoires - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement - Institut Agro Rennes Angers - Institut Agro - Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement)

Abstract

Despite many benefits provided by diversified cropping systems, there is a dearth of empirical evidence on the economic relevance of their effects, mainly due to lack of information on the dynamics of farmers' crop acreages. Our article contributes to fill this gap and, thereby, to shed light on a pair of apparently contradictory facts. European farmers tend to stick to specialized crop acreages despite agronomic experiments tending to show that crop diversification could reduce chemical input uses while maintaining or even enhancing arable crop yield levels We provide estimates of the effects of previous crops and crop acreage diversity on yield and chemical input use levels based on a sample of 769 arable crop producers covering the Marne département in France from 2008 to 2014. Our farm level dataset combines cost accounting data, information on crop sequences as well as detailed soil and weather data. Our estimation approach relies on yield functions and input use models defined as systems of simultaneous equations. These models feature farm specific random parameters for accounting for unobserved heterogeneity across farms and farmers as well as for accommodating input use endogeneity in the considered empirical crop yield functions. We estimate pre crop and crop acreage diversity effects for four major crops in the area. Pre crops effects on yields are estimated relatively accurately and are generally consistent with the rankings provided by crop production experts. Estimated pre crop effects on input uses are small and insignificant from a statistical viewpoint despite our large sample, suggesting that pre crops don't impact much chemical input requirements or/and that farmers tend to downplay these effects when deciding their chemical input use levels. Our results also show that crop acreage diversity positively impacts yield levels and tend to induce reductions in pesticide uses, herbicide uses in particular. Overall, our results demonstrate statistically significant though economically limited effects of pre crops and crop acreage diversity on crop gross margins. They also suggest that policy measures aimed to foster crop diversification are unlikely to significantly reduce chemical input uses on major crops if they are not supplemented by measures specifically aimed to reduce the uses of these inputs.

Suggested Citation

  • Ibirénoyé Honoré Romaric Sodjahin & Fabienne Femenia & Obafémi, Philippe Koutchadé & Alain Carpentier, 2023. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data," Post-Print hal-04667088, HAL.
  • Handle: RePEc:hal:journl:hal-04667088
    Note: View the original document on HAL open archive server: https://hal.science/hal-04667088v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04667088v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean‐Paul Chavas & Salvatore Di Falco, 2012. "On the Role of Risk Versus Economies of Scope in Farm Diversification With an Application to Ethiopian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 25-55, February.
    2. Tavneet Suri, 2011. "Selection and Comparative Advantage in Technology Adoption," Econometrica, Econometric Society, vol. 79(1), pages 159-209, January.
    3. Michael Livingston & Michael J. Roberts & Yue Zhang, 2015. "Optimal Sequential Plantings of Corn and Soybeans Under Price Uncertainty," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(3), pages 855-878.
    4. Alain Carpentier & Elodie Letort, 2014. "Multicrop Production Models with Multinomial Logit Acreage Shares," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 59(4), pages 537-559, December.
    5. Wooldridge, Jeffrey M., 2003. "Further results on instrumental variables estimation of average treatment effects in the correlated random coefficient model," Economics Letters, Elsevier, vol. 79(2), pages 185-191, May.
    6. Jean-Paul Chavas, 2009. "On the Productive Value of Biodiversity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(1), pages 109-131, January.
    7. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    8. Di Falco, Salvatore & Bezabih, Mintewab & Yesuf, Mahmud, 2010. "Seeds for livelihood: Crop biodiversity and food production in Ethiopia," Ecological Economics, Elsevier, vol. 69(8), pages 1695-1702, June.
    9. Miranowski, John & Orazem, Peter, 1994. "A Dynamic Model of Acreage Allocation with General and Crop-Specific Capital," Staff General Research Papers Archive 10695, Iowa State University, Department of Economics.
    10. Manuel Arellano & Stéphane Bonhomme, 2012. "Identifying Distributional Characteristics in Random Coefficients Panel Data Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 987-1020.
    11. Yair Mundlak, 1961. "Empirical Production Function Free of Management Bias," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 43(1), pages 44-56.
    12. David A. Hennessy, 2006. "On Monoculture and the Structure of Crop Rotations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 88(4), pages 900-914.
    13. Chavas, Jean-Paul & Kim, Kwansoo, 2010. "Economies of diversification: A generalization and decomposition of economies of scope," International Journal of Production Economics, Elsevier, vol. 126(2), pages 229-235, August.
    14. Nathan P. Hendricks & Aaron Smith & Daniel A. Sumner, 2014. "Crop Supply Dynamics and the Illusion of Partial Adjustment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1469-1491.
    15. Talaat El-Nazer & Bruce A. McCarl, 1986. "The Choice of Crop Rotation: A Modeling Approach and Case Study," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(1), pages 127-136.
    16. Chèze, Benoît & David, Maia & Martinet, Vincent, 2020. "Understanding farmers' reluctance to reduce pesticide use: A choice experiment," Ecological Economics, Elsevier, vol. 167(C).
    17. Anne Lacroix & Alban Thomas, 2011. "Estimating the Environmental Impact of Land and Production Decisions with Multivariate Selection Rules and Panel Data," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 780-798.
    18. Daniel A. Ackerberg & Kevin Caves & Garth Frazer, 2015. "Identification Properties of Recent Production Function Estimators," Econometrica, Econometric Society, vol. 83, pages 2411-2451, November.
    19. Alban Thomas, 2003. "A dynamic model of on-farm integrated nitrogen management," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(4), pages 439-460, December.
    20. Riju Joshi & Jeffrey M. Wooldridge, 2019. "Correlated Random Effects Models with Endogenous Explanatory Variables and Unbalanced Panels," Annals of Economics and Statistics, GENES, issue 134, pages 243-268.
    21. Peter F. Orazem & John A. Miranowski, 1994. "A Dynamic Model of Acreage Allocation with General and Crop-Specific Soil Capital," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(3), pages 385-395.
    22. Wooldridge, Jeffrey M., 2009. "On estimating firm-level production functions using proxy variables to control for unobservables," Economics Letters, Elsevier, vol. 104(3), pages 112-114, September.
    23. Jean-Paul Chavas & Salvatore Di Falco, 2012. "On the Productive Value of Crop Biodiversity: Evidence from the Highlands of Ethiopia," Land Economics, University of Wisconsin Press, vol. 88(1), pages 58-74.
    24. Bozzola, Martina & Smale, Melinda, 2020. "The welfare effects of crop biodiversity as an adaptation to climate shocks in Kenya," World Development, Elsevier, vol. 135(C).
    25. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    26. Magrini, Marie-Benoit & Anton, Marc & Cholez, Célia & Corre-Hellou, Guenaelle & Duc, Gérard & Jeuffroy, Marie-Hélène & Meynard, Jean-Marc & Pelzer, Elise & Voisin, Anne-Sophie & Walrand, Stéphane, 2016. "Why are grain-legumes rarely present in cropping systems despite their environmental and nutritional benefits? Analyzing lock-in in the French agrifood system," Ecological Economics, Elsevier, vol. 126(C), pages 152-162.
    27. Gelson Tembo & B. Wade Brorsen & Francis M. Epplin & Emílio Tostão, 2008. "Crop Input Response Functions with Stochastic Plateaus," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(2), pages 424-434.
    28. Kevin Morel & Eva Revoyron & Magali San Cristobal & Philippe V Baret, 2020. "Innovating within or outside dominant food systems? Different challenges for contrasting crop diversification strategies in Europe," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    2. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    3. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    4. Carpentier, Alain & Gohin, Alexandre, 2015. "On the economic theory of crop rotations: value of the crop rotation effects and implications on acreage choice modeling," Working Papers 205299, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    5. Bareille, François & Dupraz, Pierre, 2016. "Biodiversity productive effects in milk farms of western France: a multi-output primal system," 149th Seminar, October 27-28, 2016, Rennes, France 244774, European Association of Agricultural Economists.
    6. Hyunseok Kim & GianCarlo Moschini, 2018. "The Dynamics of Supply: U.S. Corn and Soybeans in the Biofuel Era," Land Economics, University of Wisconsin Press, vol. 94(4), pages 593-613.
    7. Bareille, Francois & Letort, Elodie & Dupraz, Pierre, 2017. "How Do Farmers Manage Their Biodiversity Through Time? A Dynamic Acreage Allocation Model With Productive Feedback," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260894, European Association of Agricultural Economists.
    8. Eder, Andreas & Salhofer, Klaus & Quddoos, Abdul, 2024. "The impact of cereal crop diversification on farm labor productivity under changing climatic conditions," Ecological Economics, Elsevier, vol. 223(C).
    9. Stigler, Matthieu M., 2018. "Supply response at the field-level: disentangling area and yield effects," 2018 Annual Meeting, August 5-7, Washington, D.C. 274343, Agricultural and Applied Economics Association.
    10. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    11. François Bareille & Pierre Dupraz, 2017. "Biodiversity Productive Capacity in Mixed Farms of North-West of France: a Multi-output Primal System," Working Papers SMART 17-03, INRAE UMR SMART.
    12. Alain Carpentier & Elodie Letort, 2010. "Simple econometric models for short term production choices in cropping systems," Working Papers SMART 10-11, INRAE UMR SMART.
    13. Bareille, Francois & Boussard, Hugues & Thenail, Claudine, 2020. "Productive ecosystem services and collective management: Lessons from a realistic landscape model," Ecological Economics, Elsevier, vol. 169(C).
    14. Nicholas J. Pates & Nathan P. Hendricks, 2021. "Fields from Afar: Evidence of Heterogeneity in United States Corn Rotational Response from Remote Sensing Data," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1759-1782, October.
    15. Makate, Clifton & Angelsen, Arild & Holden, Stein Terje & Westengen, Ola Tveitereid, 2022. "Crops in crises: Shocks shape smallholders' diversification in rural Ethiopia," World Development, Elsevier, vol. 159(C).
    16. Antonelli, Chiara & Coromaldi, Manuela & Pallante, Giacomo, 2022. "Crop and income diversification for rural adaptation: Insights from Ugandan panel data," Ecological Economics, Elsevier, vol. 195(C).
    17. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    18. Tesfaye, Wondimagegn & Tirivayi, Nyasha, 2020. "Crop diversity, household welfare and consumption smoothing under risk: Evidence from rural Uganda," World Development, Elsevier, vol. 125(C).
    19. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    20. Hongli Feng & Bruce A. Babcock, 2010. "Impacts of Ethanol on Planted Acreage in Market Equilibrium," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(3), pages 789-802.

    More about this item

    Keywords

    Crop rotation effects; Crop diversification; Endogeneity; Random parameter; SAEM algorithm;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04667088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.