IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1003800.html
   My bibliography  Save this article

Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth

Author

Listed:
  • Sébastien Benzekry
  • Clare Lamont
  • Afshin Beheshti
  • Amanda Tracz
  • John M L Ebos
  • Lynn Hlatky
  • Philip Hahnfeldt

Abstract

Despite internal complexity, tumor growth kinetics follow relatively simple laws that can be expressed as mathematical models. To explore this further, quantitative analysis of the most classical of these were performed. The models were assessed against data from two in vivo experimental systems: an ectopic syngeneic tumor (Lewis lung carcinoma) and an orthotopically xenografted human breast carcinoma. The goals were threefold: 1) to determine a statistical model for description of the measurement error, 2) to establish the descriptive power of each model, using several goodness-of-fit metrics and a study of parametric identifiability, and 3) to assess the models' ability to forecast future tumor growth. The models included in the study comprised the exponential, exponential-linear, power law, Gompertz, logistic, generalized logistic, von Bertalanffy and a model with dynamic carrying capacity. For the breast data, the dynamics were best captured by the Gompertz and exponential-linear models. The latter also exhibited the highest predictive power, with excellent prediction scores (≥80%) extending out as far as 12 days in the future. For the lung data, the Gompertz and power law models provided the most parsimonious and parametrically identifiable description. However, not one of the models was able to achieve a substantial prediction rate (≥70%) beyond the next day data point. In this context, adjunction of a priori information on the parameter distribution led to considerable improvement. For instance, forecast success rates went from 14.9% to 62.7% when using the power law model to predict the full future tumor growth curves, using just three data points. These results not only have important implications for biological theories of tumor growth and the use of mathematical modeling in preclinical anti-cancer drug investigations, but also may assist in defining how mathematical models could serve as potential prognostic tools in the clinic.Author Summary: Tumor growth curves display relatively simple time curves that can be quantified using mathematical models. Herein we exploited two experimental animal systems to assess the descriptive and predictive power of nine classical tumor growth models. Several goodness-of-fit metrics and a dedicated error model were employed to rank the models for their relative descriptive power. We found that the model with the highest descriptive power was not necessarily the most predictive one. The breast growth curves had a linear profile that allowed good predictability. Conversely, not one of the models was able to accurately predict the lung growth curves when using only a few data points. To overcome this issue, we considered a method that uses the parameter population distribution, informed from a priori knowledge, to estimate the individual parameter vector of an independent growth curve. This method was found to considerably improve the prediction success rates. These findings may benefit preclinical cancer research by identifying models most descriptive of fundamental growth characteristics. Clinical perspective is also offered on what can be expected from mathematical modeling in terms of future growth prediction.

Suggested Citation

  • Sébastien Benzekry & Clare Lamont & Afshin Beheshti & Amanda Tracz & John M L Ebos & Lynn Hlatky & Philip Hahnfeldt, 2014. "Classical Mathematical Models for Description and Prediction of Experimental Tumor Growth," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:plo:pcbi00:1003800
    DOI: 10.1371/journal.pcbi.1003800
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003800
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1003800&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1003800?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey B. West & James H. Brown & Brian J. Enquist, 2001. "A general model for ontogenetic growth," Nature, Nature, vol. 413(6856), pages 628-631, October.
    2. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Najma & Shah, Nehad Ali & Taherifar, Somaye & Zaman, F.D., 2021. "Memory effects and of the killing rate on the tumor cells concentration for a one-dimensional cancer model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Bulai, I.M. & De Bonis, M.C. & Laurita, C. & Sagaria, V., 2023. "Modeling metastatic tumor evolution, numerical resolution and growth prediction," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 721-740.
    3. Rodrigues, D.S. & Mancera, P.F.A. & Carvalho, T. & Gonçalves, L.F., 2019. "A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 118-133.
    4. Ella Ya Tyuryumina & Alexey A Neznanov, 2018. "Consolidated mathematical growth model of the primary tumor and secondary distant metastases of breast cancer (CoMPaS)," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
    5. Pelayo Martínez-Fernández & Zulima Fernández-Muñiz & Ana Cernea & Juan Luis Fernández-Martínez & Andrzej Kloczkowski, 2023. "Three Mathematical Models for COVID-19 Prediction," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    6. Charalambos Loizides & Demetris Iacovides & Marios M Hadjiandreou & Gizem Rizki & Achilleas Achilleos & Katerina Strati & Georgios D Mitsis, 2015. "Model-Based Tumor Growth Dynamics and Therapy Response in a Mouse Model of De Novo Carcinogenesis," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-18, December.
    7. Marcia Cruz-Correa & Elba C. Díaz-Toro & Jorge L. Falcón & Enid J. García-Rivera & Humberto M. Guiot & Wanda T. Maldonado-Dávila & Karen G. Martínez & William Méndez-Latalladi & Cynthia M. Pérez & Myr, 2020. "Public Health Academic Alliance for COVID-19 Response: The Role of a National Medical Task Force in Puerto Rico," IJERPH, MDPI, vol. 17(13), pages 1-14, July.
    8. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    9. Hamzeh Zureigat & Mohammed Al-Smadi & Areen Al-Khateeb & Shrideh Al-Omari & Sharifah Alhazmi, 2023. "Numerical Solution for Fuzzy Time-Fractional Cancer Tumor Model with a Time-Dependent Net Killing Rate of Cancer Cells," IJERPH, MDPI, vol. 20(4), pages 1-13, February.
    10. Gregory Baramidze & Victoria Baramidze & Ying Xu, 2021. "Mathematical model and computational scheme for multi-phase modeling of cellular population and microenvironmental dynamics in soft tissue," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-31, November.
    11. Cabrales, Luis Enrique Bergues & Montijano, Juan I. & Schonbek, Maria & Castañeda, Antonio Rafael Selva, 2018. "A viscous modified Gompertz model for the analysis of the kinetics of tumors under electrochemical therapy," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 151(C), pages 96-110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barberis, L. & Condat, C.A., 2012. "Describing interactive growth using vector universalities," Ecological Modelling, Elsevier, vol. 227(C), pages 56-63.
    2. Sigourney, Douglas B. & Munch, Stephan B. & Letcher, Benjamin H., 2012. "Combining a Bayesian nonparametric method with a hierarchical framework to estimate individual and temporal variation in growth," Ecological Modelling, Elsevier, vol. 247(C), pages 125-134.
    3. Mayu Sugiyama & Takashi Saitou & Hiroshi Kurokawa & Asako Sakaue-Sawano & Takeshi Imamura & Atsushi Miyawaki & Tadahiro Iimura, 2014. "Live Imaging-Based Model Selection Reveals Periodic Regulation of the Stochastic G1/S Phase Transition in Vertebrate Axial Development," PLOS Computational Biology, Public Library of Science, vol. 10(12), pages 1-16, December.
    4. Carl-Johan Dalgaard & Holger Strulik, 2014. "Physiological Constraints and Comparative Economic Development," Discussion Papers 14-21, University of Copenhagen. Department of Economics.
    5. Carl-Johan Dalgaard & Holger Strulik, 2015. "The physiological foundations of the wealth of nations," Journal of Economic Growth, Springer, vol. 20(1), pages 37-73, March.
    6. Ribeiro, Fabiano L. & Ribeiro, Kayo N., 2015. "A one dimensional model of population growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 201-210.
    7. Ibirénoyé Romaric Sodjahin & Fabienne Femenia & Obafemi Philippe Koutchade & A. Carpentier, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: estimation based on farm cost accounting data [Valeur économique des effets agronomiques de la diversification de," Working Papers hal-03639951, HAL.
    8. Wang, Xiaoning & Schumitzky, Alan & D'Argenio, David Z., 2007. "Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6614-6623, August.
    9. Norbert Brunner & Manfred Kühleitner & Werner Georg Nowak & Katharina Renner-Martin & Klaus Scheicher, 2019. "Comparing growth patterns of three species: Similarities and differences," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-9, October.
    10. Giacomini, Henrique C. & DeAngelis, Donald L. & Trexler, Joel C. & Petrere, Miguel, 2013. "Trait contributions to fish community assembly emerge from trophic interactions in an individual-based model," Ecological Modelling, Elsevier, vol. 251(C), pages 32-43.
    11. Artémis Llamosi & Andres M Gonzalez-Vargas & Cristian Versari & Eugenio Cinquemani & Giancarlo Ferrari-Trecate & Pascal Hersen & Gregory Batt, 2016. "What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    12. Baey, Charlotte & Didier, Anne & Lemaire, Sébastien & Maupas, Fabienne & Cournède, Paul-Henry, 2013. "Modelling the interindividual variability of organogenesis in sugar beet populations using a hierarchical segmented model," Ecological Modelling, Elsevier, vol. 263(C), pages 56-63.
    13. Carey W. King, 2021. "Interdependence of Growth, Structure, Size and Resource Consumption During an Economic Growth Cycle," Papers 2106.02512, arXiv.org.
    14. Allassonnière, Stéphanie & Kuhn, Estelle, 2015. "Convergent stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation," Computational Statistics & Data Analysis, Elsevier, vol. 91(C), pages 4-19.
    15. Santiago Campos-Barreiro & Jesús López-Fidalgo, 2015. "D-optimal experimental designs for a growth model applied to a Holstein-Friesian dairy farm," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(3), pages 491-505, September.
    16. Sodjahin, Romaric & Carpentier, Alain & Koutchade, Obafèmi Philippe & Femenia, Fabienne, 2022. "On the economic value of the agronomic effects of crop diversification for farmers: Estimation based on farm cost accounting data," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322295, Agricultural and Applied Economics Association.
    17. Laura Azzimonti & Francesca Ieva & Anna Maria Paganoni, 2013. "Nonlinear nonparametric mixed-effects models for unsupervised classification," Computational Statistics, Springer, vol. 28(4), pages 1549-1570, August.
    18. Carl-Johan Dalgaard & Casper Worm Hansen & Holger Strulik, 2017. "Accounting for Fetal Origins: Health Capital vs. Health Deficits," Discussion Papers 17-11, University of Copenhagen. Department of Economics.
    19. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    20. Carl‐Johan Dalgaard & Holger Strulik, 2016. "Physiology and Development: Why the West is Taller Than the Rest," Economic Journal, Royal Economic Society, vol. 126(598), pages 2292-2323, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1003800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.