IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i1p446-456.html
   My bibliography  Save this article

Inference in HIV dynamics models via hierarchical likelihood

Author

Listed:
  • Commenges, D.
  • Jolly, D.
  • Drylewicz, J.
  • Putter, H.
  • Thiébaut, R.

Abstract

HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have an analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood is proposed. The asymptotic distribution of the maximum h-likelihood estimators (MHLE) for fixed effects is given. The MHLE are slightly biased but the bias can be made negligible by using a parametric bootstrap procedure. An efficient algorithm for maximizing the h-likelihood is proposed. A simulation study, based on a classical HIV dynamical model, confirms the good properties of the MHLE. The method is applied to the analysis of a clinical trial.

Suggested Citation

  • Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & Thiébaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:446-456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00213-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yangxin, 2008. "Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3765-3778, March.
    2. David D. Ho & Avidan U. Neumann & Alan S. Perelson & Wen Chen & John M. Leonard & Martin Markowitz, 1995. "Rapid Turnover of Plasma Virions and CD4 Lymphocytes in HIV-1 Infection," Working Papers 95-01-002, Santa Fe Institute.
    3. Yangxin Huang & Dacheng Liu & Hulin Wu, 2006. "Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System," Biometrics, The International Biometric Society, vol. 62(2), pages 413-423, June.
    4. Noh, Maengseok & Lee, Youngjo, 2008. "Hierarchical-likelihood approach for nonlinear mixed-effects models," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3517-3527, March.
    5. J. Guedj & R. Thiébaut & D. Commenges, 2007. "Maximum Likelihood Estimation in Dynamical Models of HIV," Biometrics, The International Biometric Society, vol. 63(4), pages 1198-1206, December.
    6. J. O. Ramsay & G. Hooker & D. Campbell & J. Cao, 2007. "Parameter estimation for differential equations: a generalized smoothing approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(5), pages 741-796, November.
    7. Hongyu Miao & Carrie Dykes & Lisa M. Demeter & Hulin Wu, 2009. "Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multimodel Inference," Biometrics, The International Biometric Society, vol. 65(1), pages 292-300, March.
    8. Hulin Wu & A. Adam Ding, 1999. "Population HIV-1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials," Biometrics, The International Biometric Society, vol. 55(2), pages 410-418, June.
    9. Kuhn, E. & Lavielle, M., 2005. "Maximum likelihood estimation in nonlinear mixed effects models," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1020-1038, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Xing & Xu, Tao & Soltanalizadeh, Babak & Wu, Hulin, 2022. "Identifiability analysis of linear ordinary differential equation systems with a single trajectory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    3. Tingting Yu & Lang Wu & Peter Gilbert, 2019. "New approaches for censored longitudinal data in joint modelling of longitudinal and survival data, with application to HIV vaccine studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 229-258, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Lavielle & Adeline Samson & Ana Karina Fermin & France Mentré, 2011. "Maximum Likelihood Estimation of Long-Term HIV Dynamic Models and Antiviral Response," Biometrics, The International Biometric Society, vol. 67(1), pages 250-259, March.
    2. Liu, Baisen & Wang, Liangliang & Nie, Yunlong & Cao, Jiguo, 2019. "Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 233-246.
    3. Hanwen Huang, 2022. "Bayesian multi‐level mixed‐effects model for influenza dynamics," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1978-1995, November.
    4. Hulin Wu & Hongqi Xue & Arun Kumar, 2012. "Numerical Discretization-Based Estimation Methods for Ordinary Differential Equation Models via Penalized Spline Smoothing with Applications in Biomedical Research," Biometrics, The International Biometric Society, vol. 68(2), pages 344-352, June.
    5. Dacheng Liu & Tao Lu & Xu-Feng Niu & Hulin Wu, 2011. "Mixed-Effects State-Space Models for Analysis of Longitudinal Dynamic Systems," Biometrics, The International Biometric Society, vol. 67(2), pages 476-485, June.
    6. Jianwei Chen, 2010. "Modelling long‐term human immunodeficiency virus dynamic models with application to acquired immune deficiency syndrome clinical study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(5), pages 805-820, November.
    7. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    8. J. Guedj & R. Thiébaut & D. Commenges, 2007. "Maximum Likelihood Estimation in Dynamical Models of HIV," Biometrics, The International Biometric Society, vol. 63(4), pages 1198-1206, December.
    9. Jeremie Guedj & Rodolphe Thiébaut & Daniel Commenges, 2011. "Joint Modeling of the Clinical Progression and of the Biomarkers' Dynamics Using a Mechanistic Model," Biometrics, The International Biometric Society, vol. 67(1), pages 59-66, March.
    10. Huang, Yangxin, 2008. "Long-term HIV dynamic models incorporating drug adherence and resistance to treatment for prediction of virological responses," Computational Statistics & Data Analysis, Elsevier, vol. 52(7), pages 3765-3778, March.
    11. Mélanie Prague & Daniel Commenges & Julia Drylewicz & Rodolphe Thiébaut, 2012. "Treatment Monitoring of HIV-Infected Patients based on Mechanistic Models," Biometrics, The International Biometric Society, vol. 68(3), pages 902-911, September.
    12. Qianwen Tan & Subhashis Ghosal, 2021. "Bayesian Analysis of Mixed-effect Regression Models Driven by Ordinary Differential Equations," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 3-29, May.
    13. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    14. Xinyu Zhang & Jiguo Cao & Raymond J. Carroll, 2015. "On the selection of ordinary differential equation models with application to predator-prey dynamical models," Biometrics, The International Biometric Society, vol. 71(1), pages 131-138, March.
    15. Huang Yangxin & Chen Jiaqing & Yan Chunning, 2012. "Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-30, November.
    16. A. Adam Ding & Hulin Wu, 2000. "A Comparison Study of Models and Fitting Procedures for Biphasic Viral Dynamics in HIV-1 Infected Patients Treated with Antiviral Therapies," Biometrics, The International Biometric Society, vol. 56(1), pages 293-300, March.
    17. Lee, Kyoungjae & Lee, Jaeyong & Dass, Sarat C., 2018. "Inference for differential equation models using relaxation via dynamical systems," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 116-134.
    18. Giles Hooker, 2010. "Comments on: Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 50-53, May.
    19. Xinyu Zhang & Hua Liang & Anna Liu & David Ruppert & Guohua Zou, 2016. "Selection Strategy for Covariance Structure of Random Effects in Linear Mixed-effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(1), pages 275-291, March.
    20. Umberto Picchini & Andrea De Gaetano & Susanne Ditlevsen, 2010. "Stochastic Differential Mixed‐Effects Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(1), pages 67-90, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:446-456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.