A spatiotemporal model for extreme precipitation simulated by a climate model, with an application to assessing changes in return levels over North America
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- R. Huser & A. C. Davison, 2014. "Space–time modelling of extreme events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(2), pages 439-461, March.
- Emma F. Eastoe & Jonathan A. Tawn, 2009. "Modelling non‐stationary extremes with application to surface level ozone," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(1), pages 25-45, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ratté-Fortin, Claudie & Chokmani, Karem & El Alem, Anas & Laurion, Isabelle, 2022. "A regional model to predict the occurrence of natural events: Application to phytoplankton blooms in continental waterbodies," Ecological Modelling, Elsevier, vol. 473(C).
- Ahmad Aboubacrène Ag & Deme El Hadji & Diop Aliou & Girard Stéphane, 2019. "Estimation of the tail-index in a conditional location-scale family of heavy-tailed distributions," Dependence Modeling, De Gruyter, vol. 7(1), pages 394-417, January.
- N. Beck & C. Genest & J. Jalbert & M. Mailhot, 2020. "Predicting extreme surges from sparse data using a copula‐based hierarchical Bayesian spatial model," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
- Jonathan Jalbert & Christian Genest & Luc Perreault, 2022. "Interpolation of Precipitation Extremes on a Large Domain Toward IDF Curve Construction at Unmonitored Locations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 461-486, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation In Extreme Value Regression Models Of Hedge Fund Tail Risks," Working Papers hal-04090916, HAL.
- Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
- Koch, Erwan & Robert, Christian Y., 2019. "Geometric ergodicity for some space–time max-stable Markov chains," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 43-49.
- Daniela Castro Camilo & Miguel de Carvalho & Jennifer Wadsworth, 2017. "Time-Varying Extreme Value Dependence with Application to Leading European Stock Markets," Papers 1709.01198, arXiv.org.
- John H. J. Einmahl & Anna Kiriliouk & Andrea Krajina & Johan Segers, 2016.
"An M-estimator of spatial tail dependence,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 275-298, January.
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Other publications TiSEM 2d5c1a3b-a5f6-4329-8df2-f, Tilburg University, School of Economics and Management.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2016. "An M-estimator of spatial tail dependence," LIDAM Reprints ISBA 2016004, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, J.H.J. & Kiriliouk, A. & Krajina, A. & Segers, J., 2014. "An M-estimator of Spatial Tail Dependence," Discussion Paper 2014-021, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, Anna & Krajina, Andrea & Segers, Johan, 2014. "An M-estimator of spatial tail dependence," LIDAM Discussion Papers ISBA 2014008, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
- Einmahl, John & Kiriliouk, Anna & Segers, Johan, 2016.
"A continuous updating weighted least squares estimator of tail dependence in high dimensions,"
LIDAM Discussion Papers ISBA
2016002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John H. J. & Kiriliouk, Anna & Segers, Johan, 2018. "A continuous updating weighted least squares estimator of tail dependence in high dimensions," LIDAM Reprints ISBA 2018019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Discussion Paper 2016-002, Tilburg University, Center for Economic Research.
- Einmahl, John & Kiriliouk, A. & Segers, J.J.J., 2016. "A Continuous Updating Weighted Least Squares Estimator of Tail Dependence in High Dimensions," Other publications TiSEM a3e7350b-4773-4bd8-9c3c-6, Tilburg University, School of Economics and Management.
- Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2021. "Mixed POT-BM Approach for Modeling Unhealthy Air Pollution Events," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
- Hugo C. Winter & Jonathan A. Tawn, 2016. "Modelling heatwaves in central France: a case-study in extremal dependence," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(3), pages 345-365, April.
- C J Scarrott & A MacDonald, 2010. "Extreme-value-model-based risk assessment for nuclear reactors," Journal of Risk and Reliability, , vol. 224(4), pages 239-252, December.
- Tong Siu Tung Wong & Wai Keung Li, 2015. "Extreme values identification in regression using a peaks-over-threshold approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(3), pages 566-576, March.
- Rishikesh Yadav & Raphaël Huser & Thomas Opitz, 2021. "Spatial hierarchical modeling of threshold exceedances using rate mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(3), May.
- Samuel A. Morris & Brian J. Reich & Emeric Thibaud & Daniel Cooley, 2017. "A space-time skew-t model for threshold exceedances," Biometrics, The International Biometric Society, vol. 73(3), pages 749-758, September.
- Zhong, Peng & Huser, Raphaël & Opitz, Thomas, 2024. "Exact Simulation of Max-Infinitely Divisible Processes," Econometrics and Statistics, Elsevier, vol. 30(C), pages 96-109.
- Samuel A. Morris & Brian J. Reich & Emeric Thibaud, 2019. "Exploration and Inference in Spatial Extremes Using Empirical Basis Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 555-572, December.
- A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2021. "Semiparametric estimation for space-time max-stable processes: an F-madogram-based approach," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 241-276, July.
- Julien Hambuckers & Marie Kratz & Antoine Usseglio-Carleve, 2023. "Efficient Estimation in Extreme Value Regression Models of Hedge Fund Tail Risks," Papers 2304.06950, arXiv.org.
- A. Abu-Awwad & V. Maume-Deschamps & P. Ribereau, 2020. "Fitting spatial max-mixture processes with unknown extremal dependence class: an exploratory analysis tool," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(2), pages 479-522, June.
- M. Carvalho & S. Pereira & P. Pereira & P. Zea Bermudez, 2022. "An Extreme Value Bayesian Lasso for the Conditional Left and Right Tails," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 222-239, June.
- Fernando Nascimento & Dani Gamerman & Hedibert Lopes, 2016. "Time-varying extreme pattern with dynamic models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 131-149, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:66:y:2017:i:5:p:941-962. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.