IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i5d10.1007_s00180-023-01406-9.html
   My bibliography  Save this article

Extremal index: estimation and resampling

Author

Listed:
  • Marta Ferreira

    (Universidade do Minho)

Abstract

The duration of extremes in time leads to a phenomenon known as clustering of high values, with a strong impact on risk assessment. The extremal index is a measure developed within Extreme Value Theory that quantifies the degree of clustering of high values. In this work we will consider the cycles estimator introduced in Ferreira and Ferreira (Ann Inst Henri Poincare Probab Stat 54(2):587–605, 2018). A reduced bias estimator based on the Jackknife methodology will be presented. The bootstrap technique will also be considered in the inference and will allow to obtain confidence intervals. The performance will be analyzed based on simulation. We found our proposal effective in reducing bias and it compares favorably with some well-known methods. An application of the methods to real data will also be presented.

Suggested Citation

  • Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01406-9
    DOI: 10.1007/s00180-023-01406-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01406-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01406-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anthony W. Ledford & Jonathan A. Tawn, 1997. "Modelling Dependence within Joint Tail Regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(2), pages 475-499.
    2. J. Sebastião & A. Martins & H. Ferreira & L. Pereira, 2013. "Estimating the upcrossings index," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 549-579, November.
    3. Paul Embrechts & Sidney Resnick & Gennady Samorodnitsky, 1999. "Extreme Value Theory as a Risk Management Tool," North American Actuarial Journal, Taylor & Francis Journals, vol. 3(2), pages 30-41.
    4. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    5. Christopher A. T. Ferro & Johan Segers, 2003. "Inference for clusters of extreme values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 545-556, May.
    6. Chiapino, Mael & Sabourin, Anne & Segers, Johan, 2019. "Identifying groups of variables with the potential of being large simultaneously," LIDAM Reprints ISBA 2019021, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    8. Deheuvels, Paul, 1983. "Point processes and multivariate extreme values," Journal of Multivariate Analysis, Elsevier, vol. 13(2), pages 257-272, June.
    9. Gomes, M. Ivette & Hall, Andreia & Miranda, M. Cristina, 2008. "Subsampling techniques and the Jackknife methodology in the estimation of the extremal index," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2022-2041, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    2. Zhang, Zhengjun & Zhu, Bin, 2016. "Copula structured M4 processes with application to high-frequency financial data," Journal of Econometrics, Elsevier, vol. 194(2), pages 231-241.
    3. Paola Bortot & Carlo Gaetan, 2016. "Latent Process Modelling of Threshold Exceedances in Hourly Rainfall Series," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 531-547, September.
    4. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    5. Tsourti, Zoi & Panaretos, John, 2004. "Extreme-value analysis of teletraffic data," Computational Statistics & Data Analysis, Elsevier, vol. 45(1), pages 85-103, February.
    6. Tsourti, Zoi & Panaretos, John, 2003. "Extreme Value Index Estimators and Smoothing Alternatives: A Critical Review," MPRA Paper 6390, University Library of Munich, Germany.
    7. A. P. Martins & J. R. Sebastião, 2019. "Methods for estimating the upcrossings index: improvements and comparison," Statistical Papers, Springer, vol. 60(4), pages 1317-1347, August.
    8. J. Sebastião & A. Martins & H. Ferreira & L. Pereira, 2013. "Estimating the upcrossings index," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 549-579, November.
    9. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and Bias-Corrected Estimation of the Probability of Extreme Failure Sets," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 78(1), pages 52-86, February.
    10. Christophe Dutang & Yuri Goegebeur & Armelle Guillou, 2016. "Robust and bias-corrected estimation of the probability of extreme failure sets," Post-Print hal-01616187, HAL.
    11. Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
    12. Natalia Markovich & Marijus Vaičiulis, 2023. "Extreme Value Statistics for Evolving Random Networks," Mathematics, MDPI, vol. 11(9), pages 1-35, May.
    13. Ana-Maria Gavril, 2009. "Exchange Rate Risk: Heads or Tails," Advances in Economic and Financial Research - DOFIN Working Paper Series 35, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    14. Marco Moscadelli, 2004. "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee," Temi di discussione (Economic working papers) 517, Bank of Italy, Economic Research and International Relations Area.
    15. Marco Bee & Debbie J. Dupuis & Luca Trapin, 2016. "US stock returns: are there seasons of excesses?," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1453-1464, September.
    16. Ferreira, Helena & Ferreira, Marta, 2015. "Extremes of scale mixtures of multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 82-99.
    17. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    18. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    19. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    20. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01406-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.