IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0136403.html
   My bibliography  Save this article

A Unimodal Model for Double Observer Distance Sampling Surveys

Author

Listed:
  • Earl F Becker
  • Aaron M Christ

Abstract

Distance sampling is a widely used method to estimate animal population size. Most distance sampling models utilize a monotonically decreasing detection function such as a half-normal. Recent advances in distance sampling modeling allow for the incorporation of covariates into the distance model, and the elimination of the assumption of perfect detection at some fixed distance (usually the transect line) with the use of double-observer models. The assumption of full observer independence in the double-observer model is problematic, but can be addressed by using the point independence assumption which assumes there is one distance, the apex of the detection function, where the 2 observers are assumed independent. Aerially collected distance sampling data can have a unimodal shape and have been successfully modeled with a gamma detection function. Covariates in gamma detection models cause the apex of detection to shift depending upon covariate levels, making this model incompatible with the point independence assumption when using double-observer data. This paper reports a unimodal detection model based on a two-piece normal distribution that allows covariates, has only one apex, and is consistent with the point independence assumption when double-observer data are utilized. An aerial line-transect survey of black bears in Alaska illustrate how this method can be applied.

Suggested Citation

  • Earl F Becker & Aaron M Christ, 2015. "A Unimodal Model for Double Observer Distance Sampling Surveys," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-18, August.
  • Handle: RePEc:plo:pone00:0136403
    DOI: 10.1371/journal.pone.0136403
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136403
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136403&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0136403?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fernanda F. C. Marques & Stephen T. Buckland, 2003. "Incorporating Covariates into Standard Line Transect Analyses," Biometrics, The International Biometric Society, vol. 59(4), pages 924-935, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David L Miller & Len Thomas, 2015. "Mixture Models for Distance Sampling Detection Functions," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-19, March.
    2. S. T. Buckland & C. S. Oedekoven & D. L. Borchers, 2016. "Model-Based Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 58-75, March.
    3. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    4. Pavanato, Heloise J. & Wedekin, Leonardo L. & Guilherme-Silveira, Fernando R. & Engel, Márcia H. & Kinas, Paul G., 2017. "Estimating humpback whale abundance using hierarchical distance sampling," Ecological Modelling, Elsevier, vol. 358(C), pages 10-18.
    5. Rachel A Vanausdall & Stephen J Dinsmore, 2020. "Detection and density of breeding marsh birds in Iowa wetlands," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-17, January.
    6. Tiago Marques & Stephen Buckland & Regina Bispo & Brett Howland, 2013. "Accounting for animal density gradients using independent information in distance sampling surveys," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(1), pages 67-80, March.
    7. Mark V. Bravington & David L. Miller & Sharon L. Hedley, 2021. "Variance Propagation for Density Surface Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(2), pages 306-323, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0136403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.