IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v66y2010i1p310-318.html
   My bibliography  Save this article

A Model-Based Approach for Making Ecological Inference from Distance Sampling Data

Author

Listed:
  • Devin S. Johnson
  • Jeffrey L. Laake
  • Jay M. Ver Hoef

Abstract

No abstract is available for this item.

Suggested Citation

  • Devin S. Johnson & Jeffrey L. Laake & Jay M. Ver Hoef, 2010. "A Model-Based Approach for Making Ecological Inference from Distance Sampling Data," Biometrics, The International Biometric Society, vol. 66(1), pages 310-318, March.
  • Handle: RePEc:bla:biomet:v:66:y:2010:i:1:p:310-318
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2009.01265.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Yongtao & Loh, Ji Meng, 2007. "A Thinned Block Bootstrap Variance Estimation Procedure for Inhomogeneous Spatial Point Patterns," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1377-1386, December.
    2. S. T. Buckland & D. L. Borchers & A. Johnston & P. A. Henrys & T. A. Marques, 2007. "Line Transect Methods for Plant Surveys," Biometrics, The International Biometric Society, vol. 63(4), pages 989-998, December.
    3. D. L. Borchers & J. L. Laake & C. Southwell & C. G. M. Paxton, 2006. "Accommodating Unmodeled Heterogeneity in Double-Observer Distance Sampling Surveys," Biometrics, The International Biometric Society, vol. 62(2), pages 372-378, June.
    4. G. J. Melville & A. H. Welsh, 2001. "Line Transect Sampling in Small Regions," Biometrics, The International Biometric Society, vol. 57(4), pages 1130-1137, December.
    5. Baddeley, Adrian & Turner, Rolf, 2005. "spatstat: An R Package for Analyzing Spatial Point Patterns," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i06).
    6. Rachel M. Fewster & Stephen T. Buckland & Kenneth P. Burnham & David L. Borchers & Peter E. Jupp & Jeffrey L. Laake & Len Thomas, 2009. "Estimating the Encounter Rate Variance in Distance Sampling," Biometrics, The International Biometric Society, vol. 65(1), pages 225-236, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. T. Buckland & C. S. Oedekoven & D. L. Borchers, 2016. "Model-Based Distance Sampling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 58-75, March.
    2. R. M. Fewster, 2011. "Variance Estimation for Systematic Designs in Spatial Surveys," Biometrics, The International Biometric Society, vol. 67(4), pages 1518-1531, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. T. Buckland & D. L. Borchers & A. Johnston & P. A. Henrys & T. A. Marques, 2007. "Line Transect Methods for Plant Surveys," Biometrics, The International Biometric Society, vol. 63(4), pages 989-998, December.
    2. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    3. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    4. Jean-François Coeurjolly, 2017. "Median-based estimation of the intensity of a spatial point process," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(2), pages 303-331, April.
    5. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    6. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    7. Arii, Ken & Caspersen, John P. & Jones, Trevor A. & Thomas, Sean C., 2008. "A selection harvesting algorithm for use in spatially explicit individual-based forest simulation models," Ecological Modelling, Elsevier, vol. 211(3), pages 251-266.
    8. Jiao Jieying & Hu Guanyu & Yan Jun, 2021. "A Bayesian marked spatial point processes model for basketball shot chart," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 17(2), pages 77-90, June.
    9. Jonas Rumpf & Helga Weindl & Peter Höppe & Ernst Rauch & Volker Schmidt, 2009. "Tropical cyclone hazard assessment using model-based track simulation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(3), pages 383-398, March.
    10. Frank Davenport, 2017. "Estimating standard errors in spatial panel models with time varying spatial correlation," Papers in Regional Science, Wiley Blackwell, vol. 96, pages 155-177, March.
    11. Paul B Conn & Jeffrey L Laake & Devin S Johnson, 2012. "A Hierarchical Modeling Framework for Multiple Observer Transect Surveys," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
    12. Leandro, Camila & Jay-Robert, Pierre & Mériguet, Bruno & Houard, Xavier & Renner, Ian W., 2020. "Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework," Ecological Modelling, Elsevier, vol. 438(C).
    13. Jesper Møller & Farzaneh Safavimanesh & Jakob Gulddahl Rasmussen, 2016. "The cylindrical $K$-function and Poisson line cluster point processes," Biometrika, Biometrika Trust, vol. 103(4), pages 937-954.
    14. Yongtao Guan, 2008. "Variance estimation for statistics computed from inhomogeneous spatial point processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 175-190, February.
    15. Roba Bairakdar & Debbie Dupuis & Melina Mailhot, 2024. "Deviance Voronoi Residuals for Space-Time Point Process Models: An Application to Earthquake Insurance Risk," Papers 2410.04369, arXiv.org.
    16. Janine B. Illian & David F. R. P. Burslem, 2017. "Improving the usability of spatial point process methodology: an interdisciplinary dialogue between statistics and ecology," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 495-520, October.
    17. Carolina Bello & Thomas W. Crowther & Danielle Leal Ramos & Teresa Morán-López & Marco A. Pizo & Daisy H. Dent, 2024. "Frugivores enhance potential carbon recovery in fragmented landscapes," Nature Climate Change, Nature, vol. 14(6), pages 636-643, June.
    18. Guangshun Bai & Xuemei Yang & Guangxin Bai & Zhigang Kong & Jieyong Zhu & Shitao Zhang, 2024. "Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis," Sustainability, MDPI, vol. 16(16), pages 1-24, August.
    19. Ivan N. Kutyavin & Alexei V. Manov, 2022. "Spatial relationships of trees in middle taiga post-pyrogenic pine forest stands in the European North-East of Russia," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 68(6), pages 228-240.
    20. Bonneu, Florent & Thomas-Agnan, Christine, 2009. "Spatial point process models for location-allocation problems," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3070-3081, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:66:y:2010:i:1:p:310-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.