IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v211y2021ics0951832021000363.html
   My bibliography  Save this article

Generalized matrix-based Bayesian network for multi-state systems

Author

Listed:
  • Byun, Ji-Eun
  • Song, Junho

Abstract

To achieve a resilient society, the reliability of core engineering systems should be evaluated accurately. However, this remains challenging due to the complexity and large scale of real-world systems. Such complexity can be efficiently modelled by Bayesian network (BN), which formulates the probability distribution through a graph-based representation. On the other hand, the scale issue can be addressed by the matrix-based Bayesian network (MBN), which allows for efficient quantification and flexible inference of discrete BN. However, the MBN applications have been limited to binary-state systems, despite the essential role of multi-state engineering systems. Therefore, this paper generalizes the MBN to multi-state systems by introducing the concept of composite state. The definitions and inference operations developed for MBN are modified to accommodate the composite state, while formulations for the parameter sensitivity are also developed for the MBN. To facilitate applications of the generalized MBN, three commonly used techniques for decomposing an event space are employed to quantify the MBN, i.e. utilizing event definition, branch and bound (BnB), and decision diagram (DD), each being accompanied by an example system. The numerical examples demonstrate the efficiency and applicability of the generalized MBN. The supporting source code and data can be download at https://github.com/jieunbyun/Generalized-MBN-multi-state.

Suggested Citation

  • Byun, Ji-Eun & Song, Junho, 2021. "Generalized matrix-based Bayesian network for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021000363
    DOI: 10.1016/j.ress.2021.107468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021000363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    2. Byun, Ji-Eun & Song, Junho, 2020. "Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Xu, Zhaoping & Ramirez-Marquez, Jose Emmanuel & Liu, Yu & Xiahou, Tangfan, 2020. "A new resilience-based component importance measure for multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Mo, Yuchang & Xing, Liudong & Amari, Suprasad V. & Bechta Dugan, Joanne, 2015. "Efficient analysis of multi-state k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 95-105.
    5. Der Kiureghian, Armen & Ditlevsen, Ove D. & Song, Junho, 2007. "Availability, reliability and downtime of systems with repairable components," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 231-242.
    6. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    7. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kozyra, Paweł Marcin, 2023. "The usefulness of (d,b)-MCs and (d,b)-MPs in network reliability evaluation under delivery or maintenance cost constraints," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Chan, Jianpeng & Papaioannou, Iason & Straub, Daniel, 2022. "An adaptive subset simulation algorithm for system reliability analysis with discontinuous limit states," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Yazdi, Mohammad & Khan, Faisal & Abbassi, Rouzbeh & Quddus, Noor & Castaneda-Lopez, Homero, 2022. "A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines," Reliability Engineering and System Safety, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Byun, Ji-Eun & de Oliveira, Welington & Royset, Johannes O., 2023. "S-BORM: Reliability-based optimization of general systems using buffered optimization and reliability method," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Eryilmaz, Serkan, 2018. "The number of failed components in a k-out-of-n system consisting of multiple types of components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 246-250.
    4. Byun, Ji-Eun & Noh, Hee-Min & Song, Junho, 2017. "Reliability growth analysis of k-out-of-N systems using matrix-based system reliability method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 410-421.
    5. Rodríguez, Joanna & Lillo, Rosa E. & Ramírez-Cobo, Pepa, 2015. "Failure modeling of an electrical N-component framework by the non-stationary Markovian arrival process," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 126-133.
    6. Wu, Jason & Baker, Jack W., 2020. "Statistical learning techniques for the estimation of lifeline network performance and retrofit selection," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    7. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Lirong Cui & Shijia Du & Aofu Zhang, 2014. "Reliability measures for two-part partition of states for aggregated Markov repairable systems," Annals of Operations Research, Springer, vol. 212(1), pages 93-114, January.
    9. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    11. Dui, Hongyan & Zhu, Yawen & Tao, Junyong, 2024. "Multi-phased resilience methodology of urban sewage treatment network based on the phase and node recovery importance in IoT," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    12. Hongyan Dui & Zhe Xu & Liwei Chen & Liudong Xing & Bin Liu, 2022. "Data-Driven Maintenance Priority and Resilience Evaluation of Performance Loss in a Main Coolant System," Mathematics, MDPI, vol. 10(4), pages 1-18, February.
    13. Lyu, Dong & Si, Shubin, 2021. "Importance measure for K-out-of-n: G systems under dynamic random load considering strength degradation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. He, Gang & Wu, Wenqing & Zhang, Yuanyuan, 2018. "Analysis of a multi-component system with failure dependency, N-policy and vacations," Operations Research Perspectives, Elsevier, vol. 5(C), pages 191-198.
    15. Wei Wang & Yaofeng Xu & Liguo Hou, 2019. "Optimal allocation of test times for reliability growth testing with interval-valued model parameters," Journal of Risk and Reliability, , vol. 233(5), pages 791-802, October.
    16. Che, Haiyang & Zeng, Shengkui & Zhao, Yingzhi & Guo, Jianbin, 2024. "Reliability assessment of multi-state weighted k-out-of-n man-machine systems considering dependent machine deterioration and human fatigue," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    17. Çekyay, B. & Özekici, S., 2010. "Mean time to failure and availability of semi-Markov missions with maximal repair," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1442-1454, December.
    18. Li, Ruiying & Gao, Ying, 2022. "On the component resilience importance measures for infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    19. Dui, Hongyan & Zhang, Chi & Tian, Tianzi & Wu, Shaomin, 2022. "Different costs-informed component preventive maintenance with system lifetime changes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    20. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:211:y:2021:i:c:s0951832021000363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.