IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i10p1585-1592.html
   My bibliography  Save this article

A two-stage approach for multi-objective decision making with applications to system reliability optimization

Author

Listed:
  • Li, Zhaojun
  • Liao, Haitao
  • Coit, David W.

Abstract

This paper proposes a two-stage approach for solving multi-objective system reliability optimization problems. In this approach, a Pareto optimal solution set is initially identified at the first stage by applying a multiple objective evolutionary algorithm (MOEA). Quite often there are a large number of Pareto optimal solutions, and it is difficult, if not impossible, to effectively choose the representative solutions for the overall problem. To overcome this challenge, an integrated multiple objective selection optimization (MOSO) method is utilized at the second stage. Specifically, a self-organizing map (SOM), with the capability of preserving the topology of the data, is applied first to classify those Pareto optimal solutions into several clusters with similar properties. Then, within each cluster, the data envelopment analysis (DEA) is performed, by comparing the relative efficiency of those solutions, to determine the final representative solutions for the overall problem. Through this sequential solution identification and pruning process, the final recommended solutions to the multi-objective system reliability optimization problem can be easily determined in a more systematic and meaningful way.

Suggested Citation

  • Li, Zhaojun & Liao, Haitao & Coit, David W., 2009. "A two-stage approach for multi-objective decision making with applications to system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1585-1592.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:10:p:1585-1592
    DOI: 10.1016/j.ress.2009.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009000763
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Zhigang & Zuo, Ming J., 2006. "Redundancy allocation for multi-state systems using physical programming and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1049-1056.
    2. P. M. Ghare & R. E. Taylor, 1969. "Optimal Redundancy for Reliability in Series Systems," Operations Research, INFORMS, vol. 17(5), pages 838-847, October.
    3. Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. Ramirez-Marquez, Jose E. & Coit, David W., 2007. "Optimization of system reliability in the presence of common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1421-1434.
    6. Kumar, Ranjan & Izui, Kazuhiro & Yoshimura, Masataka & Nishiwaki, Shinji, 2009. "Multi-objective hierarchical genetic algorithms for multilevel redundancy allocation optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 891-904.
    7. Taboada, Heidi A. & Baheranwala, Fatema & Coit, David W. & Wattanapongsakorn, Naruemon, 2007. "Practical solutions for multi-objective optimization: An application to system reliability design problems," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neuvonen, Lauri & Wildemeersch, Matthias & Vilkkumaa, Eeva, 2023. "Supporting strategy selection in multiobjective decision problems under uncertainty and hidden requirements," European Journal of Operational Research, Elsevier, vol. 307(1), pages 279-293.
    2. Yao Li & Frank PA Coolen, 2019. "Time-dependent reliability analysis of wind turbines considering load-sharing using fault tree analysis and Markov chains," Journal of Risk and Reliability, , vol. 233(6), pages 1074-1085, December.
    3. Juan Li & Bin Xin & Panos M. Pardalos & Jie Chen, 2021. "Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms," Annals of Operations Research, Springer, vol. 296(1), pages 639-666, January.
    4. Xia, Tangbin & Xi, Lifeng & Zhou, Xiaojun & Lee, Jay, 2012. "Dynamic maintenance decision-making for series–parallel manufacturing system based on MAM–MTW methodology," European Journal of Operational Research, Elsevier, vol. 221(1), pages 231-240.
    5. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    6. Yuchang Mo & Liudong Xing, 2013. "An enhanced decision diagram-based method for common-cause failure analysis," Journal of Risk and Reliability, , vol. 227(5), pages 557-566, October.
    7. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    8. Azadeh, A. & Maleki Shoja, B. & Ghanei, S. & Sheikhalishahi, M., 2015. "A multi-objective optimization problem for multi-state series-parallel systems: A two-stage flow-shop manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 62-74.
    9. Zhang, Enze & Chen, Qingwei, 2016. "Multi-objective reliability redundancy allocation in an interval environment using particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 83-92.
    10. Petchrompo, Sanyapong & Wannakrairot, Anupong & Parlikad, Ajith Kumar, 2022. "Pruning Pareto optimal solutions for multi-objective portfolio asset management," European Journal of Operational Research, Elsevier, vol. 297(1), pages 203-220.
    11. Dai, Jun & Das, Diganta & Ohadi, Michael & Pecht, Michael, 2013. "Reliability risk mitigation of free air cooling through prognostics and health management," Applied Energy, Elsevier, vol. 111(C), pages 104-112.
    12. Máximo Méndez & Mariano Frutos & Fabio Miguel & Ricardo Aguasca-Colomo, 2020. "TOPSIS Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem," Mathematics, MDPI, vol. 8(11), pages 1-27, November.
    13. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    14. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    15. Jafarian, Ahmad & Rabiee, Meysam & Tavana, Madjid, 2020. "A novel multi-objective co-evolutionary approach for supply chain gap analysis with consideration of uncertainties," International Journal of Production Economics, Elsevier, vol. 228(C).
    16. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    2. Andrés Cacereño & David Greiner & Blas J. Galván, 2021. "Multi-Objective Optimum Design and Maintenance of Safety Systems: An In-Depth Comparison Study Including Encoding and Scheduling Aspects with NSGA-II," Mathematics, MDPI, vol. 9(15), pages 1-39, July.
    3. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    4. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    5. Ye, Zhisheng & Li, Zhizhong & Xie, Min, 2010. "Some improvements on adaptive genetic algorithms for reliability-related applications," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 120-126.
    6. Ding, Yi & Hu, Yishuang & Li, Daqing, 2021. "Redundancy Optimization for Multi-Performance Multi-State Series-Parallel Systems Considering Reliability Requirements," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Li, Chun-yang & Chen, Xun & Yi, Xiao-shan & Tao, Jun-yong, 2010. "Heterogeneous redundancy optimization for multi-state series–parallel systems subject to common cause failures," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 202-207.
    8. Abou, Seraphin C., 2010. "Performance assessment of multi-state systems with critical failure modes: Application to the flotation metallic arsenic circuit," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 614-622.
    9. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    10. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    11. Okafor, Ekene Gabriel & Sun, You-Chao, 2012. "Multi-objective optimization of a series–parallel system using GPSIA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 61-71.
    12. Coelho, Leandro dos Santos, 2009. "An efficient particle swarm approach for mixed-integer programming in reliability–redundancy optimization applications," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 830-837.
    13. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, March.
    14. repec:lan:wpaper:1115 is not listed on IDEAS
    15. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    16. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    17. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    18. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    19. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    20. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    21. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:10:p:1585-1592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.