IDEAS home Printed from https://ideas.repec.org/a/spr/fuzodm/v18y2019i2d10.1007_s10700-018-9290-7.html
   My bibliography  Save this article

An improved fuzzy time series forecasting model using variations of data

Author

Listed:
  • Tai Vovan

    (Can Tho University)

Abstract

This study proposes an improved fuzzy time series (IFTS) forecasting model using variations of data that can interpolate historical data and forecast the future. The parameters in this model are chosen by algorithms to obtain the most suitable values for each data set. The calculation of the IFTS model can be performed conveniently and efficiently by a procedure within the R statistical software that has been stored in the AnalyseTS package. The proposed model is also used in the forecasting of two real problems in Vietnam: the penetration of salt and the total population. These numerical examples show the advantages of the proposed model in comparison with existing models and illustrate its effectiveness in practical applications.

Suggested Citation

  • Tai Vovan, 2019. "An improved fuzzy time series forecasting model using variations of data," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 151-173, June.
  • Handle: RePEc:spr:fuzodm:v:18:y:2019:i:2:d:10.1007_s10700-018-9290-7
    DOI: 10.1007/s10700-018-9290-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10700-018-9290-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10700-018-9290-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    2. Yu, Hui-Kuang, 2005. "Weighted fuzzy time series models for TAIEX forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 609-624.
    3. Cagdas Hakan Aladag & Ufuk Yolcu & Erol Egrioglu & I. Burhan Turksen, 2016. "Type-1 fuzzy time series function method based on binary particle swarm optimisation," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 8(1), pages 2-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulong Bai & Lihong Tang & Manhong Fan & Xiaoyan Ma & Yang Yang, 2020. "Fuzzy First-Order Transition-Rules-Trained Hybrid Forecasting System for Short-Term Wind Speed Forecasts," Energies, MDPI, vol. 13(13), pages 1-21, June.
    2. Cheng-Hong Yang & Jen-Chung Shao & Yen-Hsien Liu & Pey-Huah Jou & Yu-Da Lin, 2022. "Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    3. Eren Bas & Erol Egrioglu & Taner Tunc, 2023. "Multivariate Picture Fuzzy Time Series: New Definitions and a New Forecasting Method Based on Pi-Sigma Artificial Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 139-164, January.
    4. Bogdan Oancea & Richard Pospíšil & Marius Nicolae Jula & Cosmin-Ionuț Imbrișcă, 2021. "Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
    5. Thi-Nham Le & Thanh-Tuan Dang, 2022. "An Integrated Approach for Evaluating the Efficiency of FDI Attractiveness: Evidence from Vietnamese Provincial Data from 2012 to 2022," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    6. Cheng-Hong Yang & Borcy Lee & Pey-Huah Jou & Yu-Fang Chung & Yu-Da Lin, 2023. "Analysis and Forecasting of International Airport Traffic Volume," Mathematics, MDPI, vol. 11(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    2. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    3. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    4. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    5. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    6. Vedide Rezan USLU & Eren BAS & Ufuk YOLCU & Erol EGRIOGLU, 2013. "A New Fuzzy Time Series Analysis Approach By Using Differential Evolution Algorithm And Chronologically-Determined Weights," Journal of Social and Economic Statistics, Bucharest University of Economic Studies, vol. 2(1), pages 18-30, JULY.
    7. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    8. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    9. Chih-Chung Yang & Yungho Leu & Chien-Pang Lee, 2014. "A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 115-129, June.
    10. José Eduardo Medina Reyes & Agustín Ignacio Cabrera Llanos & Salvador Cruz Aké, 2023. "Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(3), pages 1-22, Julio - S.
    11. Madeline Hui Li Lee & Yee Chee Ser & Ganeshsree Selvachandran & Pham Huy Thong & Le Cuong & Le Hoang Son & Nguyen Trung Tuan & Vassilis C. Gerogiannis, 2022. "A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    12. Lahmiri, Salim, 2016. "Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 388-396.
    13. Kaur, Gurbinder & Dhar, Joydip & Guha, Rangan Kumar, 2016. "Minimal variability OWA operator combining ANFIS and fuzzy c-means for forecasting BSE index," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 69-80.
    14. Singh, S.R., 2008. "A computational method of forecasting based on fuzzy time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 539-554.
    15. Pal, Shanoli Samui & Kar, Samarjit, 2019. "Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 18-30.
    16. Kun-Huang Huarng & Tiffany Hui-Kuang Yu & Francesc Solé Parellada, 2010. "An innovative regime switching model to forecast Taiwan tourism demand," The Service Industries Journal, Taylor & Francis Journals, vol. 31(10), pages 1603-1612, March.
    17. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    18. Sulandari, Winita & Subanar, & Lee, Muhammad Hisyam & Rodrigues, Paulo Canas, 2020. "Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks," Energy, Elsevier, vol. 190(C).
    19. Ni, Yensen & Wu, Manhwa & Day, Min-Yuh & Huang, Paoyu, 2020. "Do sharp movements in oil prices matter for stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    20. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:fuzodm:v:18:y:2019:i:2:d:10.1007_s10700-018-9290-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.