IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v380y2007icp377-390.html
   My bibliography  Save this article

Fuzzy time-series based on Fibonacci sequence for stock price forecasting

Author

Listed:
  • Chen, Tai-Liang
  • Cheng, Ching-Hsue
  • Jong Teoh, Hia

Abstract

Time-series models have been utilized to make reasonably accurate predictions in the areas of stock price movements, academic enrollments, weather, etc. For promoting the forecasting performance of fuzzy time-series models, this paper proposes a new model, which incorporates the concept of the Fibonacci sequence, the framework of Song and Chissom's model and the weighted method of Yu's model. This paper employs a 5-year period TSMC (Taiwan Semiconductor Manufacturing Company) stock price data and a 13-year period of TAIEX (Taiwan Stock Exchange Capitalization Weighted Stock Index) stock index data as experimental datasets. By comparing our forecasting performances with Chen's (Forecasting enrollments based on fuzzy time-series. Fuzzy Sets Syst. 81 (1996) 311–319), Yu's (Weighted fuzzy time-series models for TAIEX forecasting. Physica A 349 (2004) 609–624) and Huarng's (The application of neural networks to forecast fuzzy time series. Physica A 336 (2006) 481–491) models, we conclude that the proposed model surpasses in accuracy these conventional fuzzy time-series models.

Suggested Citation

  • Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
  • Handle: RePEc:eee:phsmap:v:380:y:2007:i:c:p:377-390
    DOI: 10.1016/j.physa.2007.02.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437107001938
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2007.02.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    2. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    3. Yu, Hui-Kuang, 2005. "A refined fuzzy time-series model for forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 657-681.
    4. Faff, R. W. & Brooks, R. D. & Kee, Ho Yew, 2002. "New evidence on the impact of financial leverage on beta risk: A time-series approach," The North American Journal of Economics and Finance, Elsevier, vol. 13(1), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoojeong Song & Jae Won Lee & Jongwoo Lee, 2022. "Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 27-38, January.
    2. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    3. Abdallah Abu Abdallah & Mousa Mohammad Abdullah Saleh & Sadam Al-Wadi & Firas Al Rawashdeh, 2019. "Improving the Estimation Accuracy Based on Wavelet Transform," Journal of Social Sciences (COES&RJ-JSS), , vol. 8(4), pages 544-557, October.
    4. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    5. MOROSAN Adrian, 2018. "A Mathematical Model That Can Be Used By The Gamblers To Obtain Gains In The Industry Of Sports Betting," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 70(4), pages 68-78, September.
    6. Seung Hwan Jeong & Hee Soo Lee & Hyun Nam & Kyong Joo Oh, 2021. "Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    7. Jilani, Tahseen Ahmed & Burney, Syed Muhammad Aqil, 2008. "A refined fuzzy time series model for stock market forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2857-2862.
    8. Hunt, Richard A., 2021. "Entrepreneurial orientation and the fate of corporate acquisitions," Journal of Business Research, Elsevier, vol. 122(C), pages 241-255.
    9. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    10. Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    11. Akbulak, Mehmet & Bozkurt, Durmuş, 2009. "On the order-m generalized Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1347-1355.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    2. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    3. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    4. Jilani, Tahseen Ahmed & Burney, Syed Muhammad Aqil, 2008. "A refined fuzzy time series model for stock market forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2857-2862.
    5. José Eduardo Medina Reyes & Agustín Ignacio Cabrera Llanos & Salvador Cruz Aké, 2023. "Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(3), pages 1-22, Julio - S.
    6. Pal, Shanoli Samui & Kar, Samarjit, 2019. "Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 18-30.
    7. Ni, Yensen & Wu, Manhwa & Day, Min-Yuh & Huang, Paoyu, 2020. "Do sharp movements in oil prices matter for stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    9. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    10. David Yechiam Aharon & Yossi Yagil, 2019. "The Impact of Financial Leverage on the Variance of Stock Returns," IJFS, MDPI, vol. 7(1), pages 1-18, March.
    11. Hammoudeh, Shawkat & Sari, Ramazan, 2011. "Financial CDS, stock market and interest rates: Which drives which?," The North American Journal of Economics and Finance, Elsevier, vol. 22(3), pages 257-276.
    12. Lahmiri, Salim, 2016. "Interest rate next-day variation prediction based on hybrid feedforward neural network, particle swarm optimization, and multiresolution techniques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 388-396.
    13. Xing, Xuejing, 2004. "A note on the time-series relationship between market industry concentration and market volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 14(2), pages 105-115, April.
    14. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    15. Zhou, Qin & Shang, Pengjian, 2020. "Weighted multiscale cumulative residual Rényi permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    16. Colonnello, Stefano, 2020. "Executive compensation, macroeconomic conditions, and cash flow cyclicality," Finance Research Letters, Elsevier, vol. 37(C).
    17. Sulieman Daood Aloshaibat, 2021. "Effect of Financial Leverage on the Financial Performance of Jordanian Public Shareholding Companies: Applied Study on the Financial Sector of Jordan for the Period of 2015-2019," International Journal of Economics and Financial Issues, Econjournals, vol. 11(2), pages 47-51.
    18. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    19. Liu, Hao & Zhang, Hao & Gao, Ya-Chun & Chen, Xu-Dong, 2022. "Firm age and beta: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 244-261.
    20. Schoder, Christian, 2013. "Credit vs. demand constraints: The determinants of US firm-level investment over the business cycles from 1977 to 2011," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 1-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:380:y:2007:i:c:p:377-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.