IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v61y2023i1d10.1007_s10614-021-10202-w.html
   My bibliography  Save this article

Multivariate Picture Fuzzy Time Series: New Definitions and a New Forecasting Method Based on Pi-Sigma Artificial Neural Network

Author

Listed:
  • Eren Bas

    (Giresun University)

  • Erol Egrioglu

    (Giresun University)

  • Taner Tunc

    (Ondokuz Mayis University)

Abstract

Picture fuzzy time series has been defined recently and a high order single variable forecasting method was proposed in the literature. Picture fuzzy time series definition is based on picture fuzzy sets which are the extended version of the fuzzy sets. So, more information is added for the modelling procedure with the use of picture fuzzy sets instead of classical fuzzy sets. In this study, high order multivariate picture fuzzy time series forecasting model is firstly defined and a forecasting algorithm based on this model is introduced. The proposed method uses picture fuzzy clustering and Pi-Sigma artificial neural networks as creating picture fuzzy time series and estimating of picture fuzzy forecasting model, respectively. The Pi-Sigma artificial neural network is trained by particle swarm optimization. The proposed method is applied to the TAIEX stock exchange data sets using Dow Jones and NASDAQ stock exchange data sets and Turkish lira exchange rates data sets using the dollar, euro and pound data sets as factor variables. The proposed method produces the best results among established benchmarks.

Suggested Citation

  • Eren Bas & Erol Egrioglu & Taner Tunc, 2023. "Multivariate Picture Fuzzy Time Series: New Definitions and a New Forecasting Method Based on Pi-Sigma Artificial Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 139-164, January.
  • Handle: RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-021-10202-w
    DOI: 10.1007/s10614-021-10202-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-021-10202-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-021-10202-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abhishekh & Surendra Singh Gautam & S. R. Singh, 2018. "A Score Function-Based Method of Forecasting Using Intuitionistic Fuzzy Time Series," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 91-111, March.
    2. Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
    3. Danxiang Wei & Jianzhou Wang & Kailai Ni & Guangyu Tang, 2019. "Research and Application of a Novel Hybrid Model Based on a Deep Neural Network Combined with Fuzzy Time Series for Energy Forecasting," Energies, MDPI, vol. 12(18), pages 1-38, September.
    4. Zhi Liu & Tie Zhang, 2019. "A second-order fuzzy time series model for stock price analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(14), pages 2514-2526, October.
    5. Tai Vovan, 2019. "An improved fuzzy time series forecasting model using variations of data," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 151-173, June.
    6. Lei Dong & Peng Wang & Fang Yan, 2019. "Damage forecasting based on multi-factor fuzzy time series and cloud model," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 521-538, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yulong Bai & Lihong Tang & Manhong Fan & Xiaoyan Ma & Yang Yang, 2020. "Fuzzy First-Order Transition-Rules-Trained Hybrid Forecasting System for Short-Term Wind Speed Forecasts," Energies, MDPI, vol. 13(13), pages 1-21, June.
    2. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    3. Sahar Koohfar & Wubeshet Woldemariam & Amit Kumar, 2023. "Performance Comparison of Deep Learning Approaches in Predicting EV Charging Demand," Sustainability, MDPI, vol. 15(5), pages 1-20, February.
    4. Thi-Nham Le & Thanh-Tuan Dang, 2022. "An Integrated Approach for Evaluating the Efficiency of FDI Attractiveness: Evidence from Vietnamese Provincial Data from 2012 to 2022," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    5. Wang, Jianzhou & Zhang, Linyue & Li, Zhiwu, 2022. "Interval forecasting system for electricity load based on data pre-processing strategy and multi-objective optimization algorithm," Applied Energy, Elsevier, vol. 305(C).
    6. Qiangqiang Cheng & Yiqi Yan & Shichao Liu & Chunsheng Yang & Hicham Chaoui & Mohamad Alzayed, 2020. "Particle Filter-Based Electricity Load Prediction for Grid-Connected Microgrid Day-Ahead Scheduling," Energies, MDPI, vol. 13(24), pages 1-15, December.
    7. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    8. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    9. Xiao-kang Wang & Sheng-hui Wang & Hong-yu Zhang & Jian-qiang Wang & Lin Li, 2021. "The Recommendation Method for Hotel Selection Under Traveller Preference Characteristics: A Cloud-Based Multi-Criteria Group Decision Support Model," Group Decision and Negotiation, Springer, vol. 30(6), pages 1433-1469, December.
    10. Mingyu Li & Dongxiao Niu & Zhengsen Ji & Xiwen Cui & Lijie Sun, 2021. "Forecast Research on Multidimensional Influencing Factors of Global Offshore Wind Power Investment Based on Random Forest and Elastic Net," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    11. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    12. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    13. Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
    14. Ghimire, Sujan & Deo, Ravinesh C. & Raj, Nawin & Mi, Jianchun, 2019. "Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
    16. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    17. Cheng-Hong Yang & Jen-Chung Shao & Yen-Hsien Liu & Pey-Huah Jou & Yu-Da Lin, 2022. "Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
    18. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    19. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    20. Peng Zhan & Shaokun Wang & Jun Wang & Leigang Qu & Kun Wang & Yupeng Hu & Xueqing Li, 2021. "Temporal anomaly detection on IIoT-enabled manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1669-1678, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:61:y:2023:i:1:d:10.1007_s10614-021-10202-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.