IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v162y2019icp18-30.html
   My bibliography  Save this article

Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory

Author

Listed:
  • Pal, Shanoli Samui
  • Kar, Samarjit

Abstract

Data discretization is a preprocessing technique to mine essential information from the pool of information. It is also essential to generate rules from the processed data after mining information. In this paper, a hybrid approach is proposed to forecast time series of stock price by using data discretization based on fuzzistics (Mendel, 2007 [24]; Liu and Mendel, 2008), where cumulative probability distribution approach (CPDA) is used to get the intervals for the linguistic values. First order fuzzy rule generation and reduction of rule sets by rough set theory have been performed. Thereafter, forecasting of the time series data is computed from defuzzification using reduced rule base and its historical evidences. Proposed approach is applied on stock index closing price of three time series data (BSE, NYSE, and TAIEX) as experimental data sets and the results show that the method is more effective than its counter parts.

Suggested Citation

  • Pal, Shanoli Samui & Kar, Samarjit, 2019. "Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 18-30.
  • Handle: RePEc:eee:matcom:v:162:y:2019:i:c:p:18-30
    DOI: 10.1016/j.matcom.2019.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475419300011
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2019.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    4. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    5. Granger, Clive W. J., 1992. "Forecasting stock market prices: Lessons for forecasters," International Journal of Forecasting, Elsevier, vol. 8(1), pages 3-13, June.
    6. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    7. Daniele Massacci, 2015. "Predicting the Distribution of Stock Returns: Model Formulation, Statistical Evaluation, VaR Analysis and Economic Significance," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 191-208, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You-Shyang Chen & Chien-Ku Lin & Jerome Chih-Lung Chou & Su-Fen Chen & Min-Hui Ting, 2022. "Application of Advanced Hybrid Models to Identify the Sustainable Financial Management Clients of Long-Term Care Insurance Policy," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    2. Tai-Liang Chen & Ching-Hsue Cheng & Jing-Wei Liu, 2019. "A Causal Time-Series Model Based on Multilayer Perceptron Regression for Forecasting Taiwan Stock Index," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1967-1987, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    2. Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
    3. Zhou, Qin & Shang, Pengjian, 2020. "Weighted multiscale cumulative residual Rényi permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    5. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    6. Nagaraj Naik & Biju R. Mohan, 2021. "Stock Price Volatility Estimation Using Regime Switching Technique-Empirical Study on the Indian Stock Market," Mathematics, MDPI, vol. 9(14), pages 1-18, July.
    7. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    8. Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
    9. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    10. Alberto De Santis & Umberto Dellepiane & Stefano Lucidi & Stefania Renzi, 2014. "Optimal Step-wise Parameter Optimization of a FOREX Trading Strategy," DIAG Technical Reports 2014-06, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    11. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    12. Kaur, Gurbinder & Dhar, Joydip & Guha, Rangan Kumar, 2016. "Minimal variability OWA operator combining ANFIS and fuzzy c-means for forecasting BSE index," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 122(C), pages 69-80.
    13. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    14. Robert Brooks & John Lee, 1997. "The stability of ARCH models across Australian financial futures markets," Applied Financial Economics, Taylor & Francis Journals, vol. 7(4), pages 347-359.
    15. Peter Buhlmann, 1998. "Extreme events from the return-volume process: a discretization approach for complexity reduction," Applied Financial Economics, Taylor & Francis Journals, vol. 8(3), pages 267-278.
    16. Sandrine Lardic & Valérie Mignon, 2004. "Robert F. Engle et Clive W.J. Granger prix Nobel d'économie 2003," Revue d'économie politique, Dalloz, vol. 114(1), pages 1-15.
    17. Xinyue Cui & Zhaoyu Xu & Yue Zhou, 2020. "Using Machine Learning to Forecast Future Earnings," Papers 2005.13995, arXiv.org.
    18. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    19. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    20. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:162:y:2019:i:c:p:18-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.