IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v18y2023i3p2.html
   My bibliography  Save this article

Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast

Author

Listed:
  • José Eduardo Medina Reyes

    (Queen Mary University of London, UK)

  • Agustín Ignacio Cabrera Llanos

    (Instituto Politécnico Nacional, México)

  • Salvador Cruz Aké

    (Instituto Politécnico Nacional, México)

Abstract

El presente artículo compara los métodos de varianza condicional GARCH y EGARCH, con respecto a la propuesta Fuzzy Gaussian GARCH y Fuzzy Gaussian EGARCH. Se pronosticó la rentabilidad de cuatro tipos de cambio en periodicidad diaria desde enero 2015 a noviembre 2022 y fuera de muestra, enero 2019 y diciembre 2022. Los resultados revelan que los modelos Fuzzy GARCH y Fuzzy EGARCH estiman mejor el comportamiento de la volatilidad de las series del mercado cambiario en comparación con las técnicas tradicionales. Por lo que, la recomendación es estimar otras variables de alta volatilidad para verificar la eficiencia de las técnicas difusas, sin embargo, la principal limitación es que no es posible aplicar las pruebas econométricas tradicionales para técnicas difusas porque los parámetros no son estimados con el logaritmo de máxima verosimilitud. La estimación de los parámetros de los modelos GARCH y EGARCH con teoría difusa es la propuesta de originalidad. En conclusión, las metodologías difusas tienen menos error al pronosticar la volatilidad de los tipos de cambio dentro muestra y fuera de muestra.

Suggested Citation

  • José Eduardo Medina Reyes & Agustín Ignacio Cabrera Llanos & Salvador Cruz Aké, 2023. "Fuzzy Gaussian GARCH and Fuzzy Gaussian EGARCH Models: Foreign Exchange Market Forecast," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 18(3), pages 1-22, Julio - S.
  • Handle: RePEc:imx:journl:v:18:y:2023:i:3:p:2
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/855
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    2. Yu, Hui-Kuang, 2005. "Weighted fuzzy time series models for TAIEX forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 609-624.
    3. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    4. Yu, Hui-Kuang, 2005. "A refined fuzzy time-series model for forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 657-681.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tai-Liang Chen, 2012. "Forecasting the Taiwan Stock Market with a Novel Momentum-based Fuzzy Time-series," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 38-50, February.
    2. Ni, Yensen & Wu, Manhwa & Day, Min-Yuh & Huang, Paoyu, 2020. "Do sharp movements in oil prices matter for stock markets?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    3. Huarng, Kunhuang & Yu, Tiffany Hui-Kuang, 2006. "The application of neural networks to forecast fuzzy time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(2), pages 481-491.
    4. Jilani, Tahseen Ahmed & Burney, Syed Muhammad Aqil, 2008. "A refined fuzzy time series model for stock market forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2857-2862.
    5. Chen, Tai-Liang & Cheng, Ching-Hsue & Teoh, Hia-Jong, 2008. "High-order fuzzy time-series based on multi-period adaptation model for forecasting stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 876-888.
    6. Chen, Tai-Liang & Cheng, Ching-Hsue & Jong Teoh, Hia, 2007. "Fuzzy time-series based on Fibonacci sequence for stock price forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 377-390.
    7. Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
    8. Cheng, Ching-Hsue & Wei, Liang-Ying & Liu, Jing-Wei & Chen, Tai-Liang, 2013. "OWA-based ANFIS model for TAIEX forecasting," Economic Modelling, Elsevier, vol. 30(C), pages 442-448.
    9. Singh, S.R., 2008. "A computational method of forecasting based on fuzzy time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 539-554.
    10. Pal, Shanoli Samui & Kar, Samarjit, 2019. "Time series forecasting for stock market prediction through data discretization by fuzzistics and rule generation by rough set theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 18-30.
    11. Huarng, Kunhuang & Yu, Hui-Kuang, 2005. "A Type 2 fuzzy time series model for stock index forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 445-462.
    12. Zhou, Qin & Shang, Pengjian, 2020. "Weighted multiscale cumulative residual Rényi permutation entropy of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Wei, Liang-Ying, 2013. "A hybrid model based on ANFIS and adaptive expectation genetic algorithm to forecast TAIEX," Economic Modelling, Elsevier, vol. 33(C), pages 893-899.
    14. Duen-Huang Huang & Chih-Hung Tsai & Hao-En Chueh & Liang-Ying Wei, 2019. "A Hybrid Model Based on EMD-Feature Selection and Random Forest Method for Medical Data Forecasting," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 9(4), pages 241-252, October.
    15. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    16. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    17. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    18. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    20. Umar, Muhammad & Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Furqan, Mehreen, 2023. "Asymmetric volatility structure of equity returns: Evidence from an emerging market," The Quarterly Review of Economics and Finance, Elsevier, vol. 87(C), pages 330-336.

    More about this item

    Keywords

    Lógica Difusa; GARCH; EGARCH; FUZZY GARCH; FUZZY EGARCH;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:18:y:2023:i:3:p:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.