IDEAS home Printed from https://ideas.repec.org/p/hhs/sdueko/2015_009.html
   My bibliography  Save this paper

A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem

Author

Listed:
  • Lusby, Richard Martin

    (Department of Management Engineering)

  • Range, Troels Martin

    (Department of Business and Economics)

  • Larsen, Jesper

    (Department of Management Engineering)

Abstract

The Shift Design Problem is an important optimization problem which arises when scheduling personnel in industries that require continuous operation. Based on the forecast, required staffing levels for a set of time periods, a set of shift types that best covers the demand must be determined. A shift type is a consecutive sequence of time periods that adheres to legal and union rules and can be assigned to an employee on any day. In this paper we introduce the Cardinality Constrained Shift Design Problem; a variant of the Shift Design Problem in which the number of permitted shift types is bounded by an upper limit. We present an Integer Programming model for this problem and show that its structure lends itself very naturally to Benders decomposition. Due to convergence issues with a conventional implementation, we propose a matheuristic based on Benders decomposition for solving the problem. Furthermore, we argue that an important step in this approach is finding dual alternative optimal solutions to the Benders subproblems and describe an approach to obtain a diverse set of these. Numerical tests show that the described methodology significantly outperforms a commercial Mixed Integer Programming solver on instances with 1241 different shift types and remains competitive for larger cases with 2145 shift types. On all classes of problems the heuristic is able to quickly find good solutions.

Suggested Citation

  • Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2015. "A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem," Discussion Papers on Economics 9/2015, University of Southern Denmark, Department of Economics.
  • Handle: RePEc:hhs:sdueko:2015_009
    as

    Download full text from publisher

    File URL: https://www.sdu.dk/-/media/files/om_sdu/institutter/ivoe/disc_papers/disc_2015/dpbe9_2015.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Musliu, Nysret & Schaerf, Andrea & Slany, Wolfgang, 2004. "Local search for shift design," European Journal of Operational Research, Elsevier, vol. 153(1), pages 51-64, February.
    2. Turgut Aykin, 1996. "Optimal Shift Scheduling with Multiple Break Windows," Management Science, INFORMS, vol. 42(4), pages 591-602, April.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Adel Gaballa & Wayne Pearce, 1979. "Telephone Sales Manpower Planning at Qantas," Interfaces, INFORMS, vol. 9(3), pages 1-9, May.
    5. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    6. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    7. Luca Di Gaspero & Johannes Gärtner & Guy Kortsarz & Nysret Musliu & Andrea Schaerf & Wolfgang Slany, 2007. "The minimum shift design problem," Annals of Operations Research, Springer, vol. 155(1), pages 79-105, November.
    8. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    9. T. L. Magnanti & R. T. Wong, 1981. "Accelerating Benders Decomposition: Algorithmic Enhancement and Model Selection Criteria," Operations Research, INFORMS, vol. 29(3), pages 464-484, June.
    10. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    11. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.
    12. Monia Rekik & Jean-François Cordeau & François Soumis, 2004. "Using Benders Decomposition to Implicitly Model Tour Scheduling," Annals of Operations Research, Springer, vol. 128(1), pages 111-133, April.
    13. Stephen E. Bechtold & Larry W. Jacobs, 1990. "Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling," Management Science, INFORMS, vol. 36(11), pages 1339-1351, November.
    14. Andrew J. Mason & David M. Ryan & David M. Panton, 1998. "Integrated Simulation, Heuristic and Optimisation Approaches to Staff Scheduling," Operations Research, INFORMS, vol. 46(2), pages 161-175, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
    2. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    3. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    4. Alex Bonutti & Sara Ceschia & Fabio De Cesco & Nysret Musliu & Andrea Schaerf, 2017. "Modeling and solving a real-life multi-skill shift design problem," Annals of Operations Research, Springer, vol. 252(2), pages 365-382, May.
    5. Oyku Ahipasaoglu & Nesim Erkip & Oya Ekin Karasan, 2019. "The venue management problem: setting staffing levels, shifts and shift schedules at concession stands," Journal of Scheduling, Springer, vol. 22(1), pages 69-83, February.
    6. Arjan Akkermans & Gerhard Post & Marc Uetz, 2021. "Solving the shift and break design problem using integer linear programming," Annals of Operations Research, Springer, vol. 302(2), pages 341-362, July.
    7. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    8. Jens O. Brunner & Jonathan F. Bard & Jan M. Köhler, 2013. "Bounded flexibility in days‐on and days‐off scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 678-701, December.
    9. Chapados, Nicolas & Joliveau, Marc & L’Ecuyer, Pierre & Rousseau, Louis-Martin, 2014. "Retail store scheduling for profit," European Journal of Operational Research, Elsevier, vol. 239(3), pages 609-624.
    10. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    11. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    12. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    13. Idris Addou & François Soumis, 2007. "Bechtold-Jacobs generalized model for shift scheduling with extraordinary overlap," Annals of Operations Research, Springer, vol. 155(1), pages 177-205, November.
    14. Melanie Erhard, 2021. "Flexible staffing of physicians with column generation," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 212-252, March.
    15. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    16. Restrepo, María I. & Gendron, Bernard & Rousseau, Louis-Martin, 2017. "A two-stage stochastic programming approach for multi-activity tour scheduling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 620-635.
    17. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    18. Antonio Jiménez-Martín & Faustino Tello & Alfonso Mateos, 2020. "A Variation of the ATC Work Shift Scheduling Problem to Deal with Incidents at Airport Control Centers," Mathematics, MDPI, vol. 8(3), pages 1-27, March.
    19. Pieter Smet & Annelies Lejon & Greet Vanden Berghe, 2021. "Demand smoothing in shift design," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 457-484, June.
    20. Kraul, Sebastian & Erhard, Melanie & Brunner, Jens O., 2024. "Optimizing physician schedules with resilient break assignments," Omega, Elsevier, vol. 129(C).

    More about this item

    Keywords

    Scheduling; shift design; integer programming; benders decomposition;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:sdueko:2015_009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Astrid Holm Nielsen (email available below). General contact details of provider: https://edirc.repec.org/data/okioudk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.