IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i2p385-397.html
   My bibliography  Save this article

A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem

Author

Listed:
  • Lusby, Richard Martin
  • Range, Troels Martin
  • Larsen, Jesper

Abstract

The Shift Design Problem is an important optimization problem which arises when scheduling personnel in industries that require continuous operation. Based on the forecast, required staffing levels for a set of time periods, a set of shift types that best covers the demand must be determined. A shift type is a consecutive sequence of time periods that adheres to legal and union rules and can be assigned to an employee on any day. In this paper we introduce the Cardinality Constrained Shift Design Problem; a variant of the Shift Design Problem in which the number of permitted shift types is bounded by an upper limit. We present an integer programming model for this problem and show that its structure lends itself very naturally to Benders decomposition. Due to convergence issues with a conventional implementation, we propose a matheuristic based on Benders decomposition for solving the problem. Furthermore, we argue that an important step in this approach is finding dual alternative optimal solutions to the Benders subproblems and describe an approach to obtain a diverse set of these. Numerical tests show that the described methodology significantly outperforms a commercial mixed integer programming solver on instances with 1241 different shift types and remains competitive for larger cases with 2145 shift types. On all classes of problems the heuristic is able to quickly find good solutions.

Suggested Citation

  • Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2016. "A Benders decomposition-based matheuristic for the Cardinality Constrained Shift Design Problem," European Journal of Operational Research, Elsevier, vol. 254(2), pages 385-397.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:2:p:385-397
    DOI: 10.1016/j.ejor.2016.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716302338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Musliu, Nysret & Schaerf, Andrea & Slany, Wolfgang, 2004. "Local search for shift design," European Journal of Operational Research, Elsevier, vol. 153(1), pages 51-64, February.
    2. Turgut Aykin, 1996. "Optimal Shift Scheduling with Multiple Break Windows," Management Science, INFORMS, vol. 42(4), pages 591-602, April.
    3. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    4. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    5. Adel Gaballa & Wayne Pearce, 1979. "Telephone Sales Manpower Planning at Qantas," Interfaces, INFORMS, vol. 9(3), pages 1-9, May.
    6. M. Segal, 1974. "The Operator-Scheduling Problem: A Network-Flow Approach," Operations Research, INFORMS, vol. 22(4), pages 808-823, August.
    7. A.T. Ernst & H. Jiang & M. Krishnamoorthy & B. Owens & D. Sier, 2004. "An Annotated Bibliography of Personnel Scheduling and Rostering," Annals of Operations Research, Springer, vol. 127(1), pages 21-144, March.
    8. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    9. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.
    10. Luca Di Gaspero & Johannes Gärtner & Guy Kortsarz & Nysret Musliu & Andrea Schaerf & Wolfgang Slany, 2007. "The minimum shift design problem," Annals of Operations Research, Springer, vol. 155(1), pages 79-105, November.
    11. R Lusby & A Dohn & T M Range & J Larsen, 2012. "A column generation-based heuristic for rostering with work patterns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(2), pages 261-277, February.
    12. Monia Rekik & Jean-François Cordeau & François Soumis, 2004. "Using Benders Decomposition to Implicitly Model Tour Scheduling," Annals of Operations Research, Springer, vol. 128(1), pages 111-133, April.
    13. Stephen E. Bechtold & Larry W. Jacobs, 1990. "Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling," Management Science, INFORMS, vol. 36(11), pages 1339-1351, November.
    14. Andrew J. Mason & David M. Ryan & David M. Panton, 1998. "Integrated Simulation, Heuristic and Optimisation Approaches to Staff Scheduling," Operations Research, INFORMS, vol. 46(2), pages 161-175, April.
    15. P. Eveborn & M. Rönnqvist, 2004. "Scheduler – A System for Staff Planning," Annals of Operations Research, Springer, vol. 128(1), pages 21-45, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pieter Smet & Annelies Lejon & Greet Vanden Berghe, 2021. "Demand smoothing in shift design," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 457-484, June.
    2. Reddy, K. Nageswara & Kumar, Akhilesh & Choudhary, Alok & Cheng, T. C. Edwin, 2022. "Multi-period green reverse logistics network design: An improved Benders-decomposition-based heuristic approach," European Journal of Operational Research, Elsevier, vol. 303(2), pages 735-752.
    3. Feng, Tao & Lusby, Richard M. & Zhang, Yongxiang & Tao, Siyu & Zhang, Bojian & Peng, Qiyuan, 2024. "A branch-and-price algorithm for integrating urban rail crew scheduling and rostering problems," Transportation Research Part B: Methodological, Elsevier, vol. 183(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lusby, Richard Martin & Range, Troels Martin & Larsen, Jesper, 2015. "A Benders decomposition-based Matheuristic for the Cardinality Constrained Shift Design Problem," Discussion Papers on Economics 9/2015, University of Southern Denmark, Department of Economics.
    2. Banu Sungur & Cemal Özgüven & Yasemin Kariper, 2017. "Shift scheduling with break windows, ideal break periods, and ideal waiting times," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 203-222, June.
    3. Oyku Ahipasaoglu & Nesim Erkip & Oya Ekin Karasan, 2019. "The venue management problem: setting staffing levels, shifts and shift schedules at concession stands," Journal of Scheduling, Springer, vol. 22(1), pages 69-83, February.
    4. Arjan Akkermans & Gerhard Post & Marc Uetz, 2021. "Solving the shift and break design problem using integer linear programming," Annals of Operations Research, Springer, vol. 302(2), pages 341-362, July.
    5. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    6. Alex Bonutti & Sara Ceschia & Fabio De Cesco & Nysret Musliu & Andrea Schaerf, 2017. "Modeling and solving a real-life multi-skill shift design problem," Annals of Operations Research, Springer, vol. 252(2), pages 365-382, May.
    7. Jens O. Brunner & Jonathan F. Bard & Jan M. Köhler, 2013. "Bounded flexibility in days‐on and days‐off scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(8), pages 678-701, December.
    8. Chapados, Nicolas & Joliveau, Marc & L’Ecuyer, Pierre & Rousseau, Louis-Martin, 2014. "Retail store scheduling for profit," European Journal of Operational Research, Elsevier, vol. 239(3), pages 609-624.
    9. Van den Bergh, Jorne & Beliën, Jeroen & De Bruecker, Philippe & Demeulemeester, Erik & De Boeck, Liesje, 2013. "Personnel scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 226(3), pages 367-385.
    10. Ferdinand Kiermaier & Markus Frey & Jonathan F. Bard, 2020. "The flexible break assignment problem for large tour scheduling problems with an application to airport ground handlers," Journal of Scheduling, Springer, vol. 23(2), pages 177-209, April.
    11. Mark W. Isken & Osman T. Aydas, 2022. "A tactical multi-week implicit tour scheduling model with applications in healthcare," Health Care Management Science, Springer, vol. 25(4), pages 551-573, December.
    12. Sana Dahmen & Monia Rekik & François Soumis, 2018. "An implicit model for multi-activity shift scheduling problems," Journal of Scheduling, Springer, vol. 21(3), pages 285-304, June.
    13. Idris Addou & François Soumis, 2007. "Bechtold-Jacobs generalized model for shift scheduling with extraordinary overlap," Annals of Operations Research, Springer, vol. 155(1), pages 177-205, November.
    14. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.
    15. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    16. Defraeye, Mieke & Van Nieuwenhuyse, Inneke, 2016. "Staffing and scheduling under nonstationary demand for service: A literature review," Omega, Elsevier, vol. 58(C), pages 4-25.
    17. Pieter Smet & Annelies Lejon & Greet Vanden Berghe, 2021. "Demand smoothing in shift design," Flexible Services and Manufacturing Journal, Springer, vol. 33(2), pages 457-484, June.
    18. Sanja Petrovic, 2019. "“You have to get wet to learn how to swim” applied to bridging the gap between research into personnel scheduling and its implementation in practice," Annals of Operations Research, Springer, vol. 275(1), pages 161-179, April.
    19. Wu, Zhiying & Xu, Guoning & Chen, Qingxin & Mao, Ning, 2023. "Two stochastic optimization methods for shift design with uncertain demand," Omega, Elsevier, vol. 115(C).
    20. Ağralı, Semra & Taşkın, Z. Caner & Ünal, A. Tamer, 2017. "Employee scheduling in service industries with flexible employee availability and demand," Omega, Elsevier, vol. 66(PA), pages 159-169.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:2:p:385-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.