IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v23y2019i3d10.1007_s00780-019-00395-2.html
   My bibliography  Save this article

Duality for pathwise superhedging in continuous time

Author

Listed:
  • Daniel Bartl

    (Universität Wien)

  • Michael Kupper

    (Universität Konstanz)

  • David J. Prömel

    (University of Oxford)

  • Ludovic Tangpi

    (Princeton University)

Abstract

We provide a model-free pricing–hedging duality in continuous time. For a frictionless market consisting of d $d$ risky assets with continuous price trajectories, we show that the purely analytic problem of finding the minimal superhedging price of a path-dependent European option has the same value as the purely probabilistic problem of finding the supremum of the expectations of the option over all martingale measures. The superhedging problem is formulated with simple trading strategies, the claim is the limit inferior of continuous functions, which allows upper and lower semi-continuous claims, and superhedging is required in the pathwise sense on a σ $\sigma $ -compact sample space of price trajectories. If the sample space is stable under stopping, the probabilistic problem reduces to finding the supremum over all martingale measures with compact support. As an application of the general results, we deduce dualities for Vovk’s outer measure and semi-static superhedging with finitely many securities.

Suggested Citation

  • Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
  • Handle: RePEc:spr:finsto:v:23:y:2019:i:3:d:10.1007_s00780-019-00395-2
    DOI: 10.1007/s00780-019-00395-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-019-00395-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-019-00395-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Acciaio, Beatrice & Larsson, Martin, 2017. "Semi-static completeness and robust pricing by informed investors," LSE Research Online Documents on Economics 68502, London School of Economics and Political Science, LSE Library.
    2. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    3. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    4. J. Jacod & A.N. Shiryaev, 1998. "Local martingales and the fundamental asset pricing theorems in the discrete-time case," Finance and Stochastics, Springer, vol. 2(3), pages 259-273.
    5. Alexander Schied & Iryna Voloshchenko, 2015. "Pathwise no-arbitrage in a class of Delta hedging strategies," Papers 1511.00026, arXiv.org, revised Jun 2016.
    6. Patrick Cheridito & Michael Kupper & Ludovic Tangpi, 2016. "Duality formulas for robust pricing and hedging in discrete time," Papers 1602.06177, arXiv.org, revised Sep 2017.
    7. Omar El Euch & Mathieu Rosenbaum, 2019. "The characteristic function of rough Heston models," Mathematical Finance, Wiley Blackwell, vol. 29(1), pages 3-38, January.
    8. Daniel Bartl, 2016. "Exponential utility maximization under model uncertainty for unbounded endowments," Papers 1610.00999, arXiv.org, revised Feb 2019.
    9. Nicolas Perkowski & David J. Promel, 2013. "Pathwise stochastic integrals for model free finance," Papers 1311.6187, arXiv.org, revised Jun 2016.
    10. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    11. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    12. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    13. Nutz, Marcel, 2015. "Robust superhedging with jumps and diffusion," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4543-4555.
    14. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    15. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    16. Mikkel Bennedsen & Asger Lunde & Mikko S. Pakkanen, 2017. "Decoupling the short- and long-term behavior of stochastic volatility," CREATES Research Papers 2017-26, Department of Economics and Business Economics, Aarhus University.
    17. Vladimir Vovk, 2016. "Another example of duality between game-theoretic and measure-theoretic probability," Papers 1608.02706, arXiv.org.
    18. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    19. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    20. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    21. Dylan Possamai & Guillaume Royer & Nizar Touzi, 2013. "On the Robust superhedging of measurable claims," Papers 1302.1850, arXiv.org, revised Feb 2013.
    22. Anna Aksamit & Zhaoxu Hou & Jan Obl'oj, 2016. "Robust framework for quantifying the value of information in pricing and hedging," Papers 1605.02539, arXiv.org, revised Mar 2018.
    23. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    24. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    25. Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
    26. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    27. Rostek, S. & Schöbel, R., 2013. "A note on the use of fractional Brownian motion for financial modeling," Economic Modelling, Elsevier, vol. 30(C), pages 30-35.
    28. Christian Bayer & Peter Friz & Jim Gatheral, 2016. "Pricing under rough volatility," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 887-904, June.
    29. Marcel Nutz, 2014. "Robust Superhedging with Jumps and Diffusion," Papers 1407.1674, arXiv.org, revised Jul 2015.
    30. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    31. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    32. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2021. "Duality theory for robust utility maximisation," Finance and Stochastics, Springer, vol. 25(3), pages 469-503, July.
    2. Hölzermann, Julian, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Center for Mathematical Economics Working Papers 633, Center for Mathematical Economics, Bielefeld University.
    3. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    4. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    5. Matteo Burzoni & Marco Maggis, 2019. "Arbitrage-free modeling under Knightian Uncertainty," Papers 1909.04602, arXiv.org, revised Apr 2020.
    6. Francesca Biagini & Thomas Reitsam, 2021. "A dynamic version of the super-replication theorem under proportional transaction costs," Papers 2107.02628, arXiv.org.
    7. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2023. "Neural network approximation for superhedging prices," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 146-184, January.
    8. Christian Bender & Sebastian Ferrando & Alfredo Gonzalez, 2021. "Model-Free Finance and Non-Lattice Integration," Papers 2105.10623, arXiv.org.
    9. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    10. Henry Chiu & Rama Cont, 2022. "A model-free approach to continuous-time finance," Papers 2211.15531, arXiv.org.
    11. Huy N. Chau & Masaaki Fukasawa & Miklós Rásonyi, 2022. "Super‐replication with transaction costs under model uncertainty for continuous processes," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1066-1085, October.
    12. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    13. Huy N. Chau & Masaaki Fukasawa & Miklos Rasonyi, 2021. "Super-replication with transaction costs under model uncertainty for continuous processes," Papers 2102.02298, arXiv.org.
    14. Alessandro Doldi & Marco Frittelli & Emanuela Rosazza Gianin, 2024. "On entropy martingale optimal transport theory," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 1-42, June.
    15. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Duality Theory for Robust Utility Maximisation," Papers 2007.08376, arXiv.org, revised Jun 2021.
    16. Julian Holzermann, 2020. "Pricing Interest Rate Derivatives under Volatility Uncertainty," Papers 2003.04606, arXiv.org, revised Nov 2021.
    17. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    18. Henry Chiu & Rama Cont, 2023. "A model‐free approach to continuous‐time finance," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 257-273, April.
    19. Ariel Neufeld & Julian Sester, 2021. "Model-free price bounds under dynamic option trading," Papers 2101.01024, arXiv.org, revised Jul 2021.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    2. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    3. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    4. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    5. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    6. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    7. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    8. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    9. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    10. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    11. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    12. Mun-Chol Kim & Song-Chol Ryom, 2022. "Pathwise superhedging under proportional transaction costs," Mathematics and Financial Economics, Springer, volume 16, number 4, December.
    13. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    14. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2017. "Pathwise superhedging on prediction sets," Papers 1711.02764, arXiv.org, revised Oct 2019.
    15. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    16. Bruno Bouchard & Xiaolu Tan, 2021. "A quasi-sure optional decomposition and super-hedging result on the Skorokhod space," Finance and Stochastics, Springer, vol. 25(3), pages 505-528, July.
    17. Huy N. Chau & Masaaki Fukasawa & Miklos Rasonyi, 2021. "Super-replication with transaction costs under model uncertainty for continuous processes," Papers 2102.02298, arXiv.org.
    18. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    19. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2016. "Hedging with Small Uncertainty Aversion," Papers 1605.06429, arXiv.org.
    20. Sebastian Herrmann & Johannes Muhle-Karbe & Frank Thomas Seifried, 2017. "Hedging with small uncertainty aversion," Finance and Stochastics, Springer, vol. 21(1), pages 1-64, January.

    More about this item

    Keywords

    Pathwise superhedging; Pricing–hedging duality; Vovk’s outer measure; Semi-static hedging; Martingale measures; σ $sigma $ -compactness;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:23:y:2019:i:3:d:10.1007_s00780-019-00395-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.