IDEAS home Printed from https://ideas.repec.org/a/spr/finsto/v22y2018i3d10.1007_s00780-018-0363-9.html
   My bibliography  Save this article

Robust pricing–hedging dualities in continuous time

Author

Listed:
  • Zhaoxu Hou

    (University of Oxford)

  • Jan Obłój

    (University of Oxford)

Abstract

We pursue a robust approach to pricing and hedging in mathematical finance. We consider a continuous-time setting in which some underlying assets and options, with continuous price paths, are available for dynamic trading and a further set of European options, possibly with varying maturities, is available for static trading. Motivated by the notion of prediction set in Mykland (Ann. Stat. 31:1413–1438, 2003), we include in our setup modelling beliefs by allowing to specify a set of paths to be considered, e.g. superreplication of a contingent claim is required only for paths falling in the given set. Our framework thus interpolates between model-independent and model-specific settings and allows us to quantify the impact of making assumptions or gaining information. We obtain a general pricing–hedging duality result: the infimum over superhedging prices of an exotic option with payoff G $G$ is equal to the supremum of expectations of G $G$ under calibrated martingale measures. Our results include in particular the martingale optimal transport duality of Dolinsky and Soner (Probab. Theory Relat. Fields 160:391–427, 2014) and extend it to multiple dimensions, multiple maturities and beliefs which are invariant under time-changes. In a general setting with arbitrary beliefs and for a uniformly continuous G $G$ , the asserted duality holds between limiting values of perturbed problems.

Suggested Citation

  • Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
  • Handle: RePEc:spr:finsto:v:22:y:2018:i:3:d:10.1007_s00780-018-0363-9
    DOI: 10.1007/s00780-018-0363-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00780-018-0363-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00780-018-0363-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gianluca Cassese, 2008. "Asset Pricing With No Exogenous Probability Measure," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 23-54, January.
    2. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    3. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    4. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    5. Bruno Bouchard & Marcel Nutz, 2013. "Arbitrage and duality in nondominated discrete-time models," Papers 1305.6008, arXiv.org, revised Mar 2015.
    6. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    7. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    8. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    9. Jan Obłój & Frédérik Ulmer, 2012. "Performance Of Robust Hedges For Digital Double Barrier Options," World Scientific Book Chapters, in: Matheus R Grasselli & Lane P Hughston (ed.), Finance at Fields, chapter 23, pages 521-554, World Scientific Publishing Co. Pte. Ltd..
    10. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem For Continuous Processes," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 963-987, October.
    11. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    12. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    13. A. Galichon & P. Henry-Labord`ere & N. Touzi, 2014. "A stochastic control approach to no-arbitrage bounds given marginals, with an application to lookback options," Papers 1401.3921, arXiv.org.
    14. Yan Dolinsky & H. Soner, 2014. "Robust hedging with proportional transaction costs," Finance and Stochastics, Springer, vol. 18(2), pages 327-347, April.
    15. Erhan Bayraktar & Zhou Zhou, 2017. "On Arbitrage And Duality Under Model Uncertainty And Portfolio Constraints," Mathematical Finance, Wiley Blackwell, vol. 27(4), pages 988-1012, October.
    16. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    17. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    18. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    19. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2016. "Universal arbitrage aggregator in discrete-time markets under uncertainty," Finance and Stochastics, Springer, vol. 20(1), pages 1-50, January.
    20. Pierre Henry-Labord`ere & Jan Ob{l}'oj & Peter Spoida & Nizar Touzi, 2012. "The maximum maximum of a martingale with given $n$ marginals," Papers 1203.6877, arXiv.org, revised Jan 2016.
    21. Vladimir Vovk, 2012. "Continuous-time trading and the emergence of probability," Finance and Stochastics, Springer, vol. 16(4), pages 561-609, October.
    22. Dylan Possamai & Guillaume Royer & Nizar Touzi, 2013. "On the Robust superhedging of measurable claims," Papers 1302.1850, arXiv.org, revised Feb 2013.
    23. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    24. Sara Biagini & Bruno Bouchard & Constantinos Kardaras & Marcel Nutz, 2017. "Robust Fundamental Theorem for Continuous Processes," Post-Print hal-01076062, HAL.
    25. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    26. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    27. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    28. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    29. A. E. Whalley & P. Wilmott, 1997. "An Asymptotic Analysis of an Optimal Hedging Model for Option Pricing with Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 307-324, July.
    30. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    31. Mark Davis & Jan Obłój & Vimal Raval, 2014. "Arbitrage Bounds For Prices Of Weighted Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 821-854, October.
    32. Jan Obłój & Frédérik Ulmer, 2012. "Performance Of Robust Hedges For Digital Double Barrier Options," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 1-34.
    33. Frank Riedel, 2015. "Financial economics without probabilistic prior assumptions," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 38(1), pages 75-91, April.
    34. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2016. "Universal arbitrage aggregator in discrete-time markets under uncertainty," Finance and Stochastics, Springer, vol. 20(1), pages 1-50, January.
    35. B. Acciaio & M. Beiglböck & F. Penkner & W. Schachermayer, 2016. "A Model-Free Version Of The Fundamental Theorem Of Asset Pricing And The Super-Replication Theorem," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 233-251, April.
    36. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    2. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    3. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    4. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    5. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model uncertainty, recalibration, and the emergence of delta–vega hedging," Finance and Stochastics, Springer, vol. 21(4), pages 873-930, October.
    6. Patrick Cheridito & Matti Kiiski & David J. Promel & H. Mete Soner, 2019. "Martingale optimal transport duality," Papers 1904.04644, arXiv.org, revised Nov 2020.
    7. Johannes Muhle-Karbe & Marcel Nutz, 2018. "A risk-neutral equilibrium leading to uncertain volatility pricing," Finance and Stochastics, Springer, vol. 22(2), pages 281-295, April.
    8. Sebastian Herrmann & Johannes Muhle-Karbe, 2017. "Model Uncertainty, Recalibration, and the Emergence of Delta-Vega Hedging," Papers 1704.04524, arXiv.org.
    9. Daniel Bartl & Michael Kupper & David J. Promel & Ludovic Tangpi, 2017. "Duality for pathwise superhedging in continuous time," Papers 1705.02933, arXiv.org, revised Apr 2019.
    10. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2023. "Model-Free Bounds for Multi-Asset Options Using Option-Implied Information and Their Exact Computation," Management Science, INFORMS, vol. 69(4), pages 2051-2068, April.
    11. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Ob{l}'oj, 2016. "Pointwise Arbitrage Pricing Theory in Discrete Time," Papers 1612.07618, arXiv.org, revised Feb 2018.
    12. Matteo Burzoni & Marco Frittelli & Zhaoxu Hou & Marco Maggis & Jan Obłój, 2019. "Pointwise Arbitrage Pricing Theory in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1034-1057, August.
    13. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    14. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    15. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    16. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    17. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    18. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    19. Johannes Muhle-Karbe & Marcel Nutz, 2016. "A Risk-Neutral Equilibrium Leading to Uncertain Volatility Pricing," Papers 1612.09152, arXiv.org, revised Jan 2018.
    20. Jan Obłój & Johannes Wiesel, 2021. "A unified framework for robust modelling of financial markets in discrete time," Finance and Stochastics, Springer, vol. 25(3), pages 427-468, July.

    More about this item

    Keywords

    Robust pricing and hedging; Pricing–hedging duality; Martingale optimal transport; Path space restrictions; Pathwise modelling;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:finsto:v:22:y:2018:i:3:d:10.1007_s00780-018-0363-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.