IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v18y2018i6p933-949.html
   My bibliography  Save this article

Volatility is rough

Author

Listed:
  • Jim Gatheral
  • Thibault Jaisson
  • Mathieu Rosenbaum

Abstract

Estimating volatility from recent high frequency data, we revisit the question of the smoothness of the volatility process. Our main result is that log-volatility behaves essentially as a fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable timescale. This leads us to adopt the fractional stochastic volatility (FSV) model of Comte and Renault [Long memory in continuous-time stochastic volatility models. Math. Finance, 1998, 8(4), 291–323]. We call our model Rough FSV (RFSV) to underline that, in contrast to FSV, H<1/2$ H<1/2 $. We demonstrate that our RFSV model is remarkably consistent with financial time series data; one application is that it enables us to obtain improved forecasts of realized volatility. Furthermore, we find that although volatility is not a long memory process in the RFSV model, classical statistical procedures aiming at detecting volatility persistence tend to conclude the presence of long memory in data generated from it. This sheds light on why long memory of volatility has been widely accepted as a stylized fact.

Suggested Citation

  • Jim Gatheral & Thibault Jaisson & Mathieu Rosenbaum, 2018. "Volatility is rough," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 933-949, June.
  • Handle: RePEc:taf:quantf:v:18:y:2018:i:6:p:933-949
    DOI: 10.1080/14697688.2017.1393551
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2017.1393551
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2017.1393551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:18:y:2018:i:6:p:933-949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.