IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v95y2022i6d10.1140_epjb_s10051-022-00358-1.html
   My bibliography  Save this article

Diffusive transport in the lowest Landau level of disordered 2d semimetals: the mean-square-displacement approach

Author

Listed:
  • Andreas Sinner

    (Universität Augsburg
    Uniwersytet Opolski)

  • Gregor Tkachov

    (Universität Augsburg)

Abstract

We study the electronic transport in the lowest Landau level of disordered two-dimensional semimetals placed in a homogeneous perpendicular magnetic field. The material system is modeled by the Bernevig–Hughes–Zhang Hamiltonian, which has zero energy Landau modes due to the material’s intrinsic Berry curvature. These turn out to be crucially important for the density of states and the static conductivity of the disordered system. We develop an analytical approach to the diffusion and conductivity based on a self-consistent equation of motion for the mean-squared displacement. The obtained value of the zero mode conductivity is close to the conductivity of disordered Dirac electrons without magnetic fields, which have zero energy points in the spectrum as well. Our analysis is applicable in a broader context of disordered two-dimensional electron gases in strong magnetic fields. Graphicabstract

Suggested Citation

  • Andreas Sinner & Gregor Tkachov, 2022. "Diffusive transport in the lowest Landau level of disordered 2d semimetals: the mean-square-displacement approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-17, June.
  • Handle: RePEc:spr:eurphb:v:95:y:2022:i:6:d:10.1140_epjb_s10051-022-00358-1
    DOI: 10.1140/epjb/s10051-022-00358-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1140/epjb/s10051-022-00358-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1140/epjb/s10051-022-00358-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    2. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    3. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    4. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    5. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    6. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    7. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    8. Xuefei Liu & Zhaocai Zhang & Bing Lv & Zhao Ding & Zijiang Luo, 2021. "Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-7, January.
    9. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    10. Anna M. Seiler & Nils Jacobsen & Martin Statz & Noelia Fernandez & Francesca Falorsi & Kenji Watanabe & Takashi Taniguchi & Zhiyu Dong & Leonid S. Levitov & R. Thomas Weitz, 2024. "Probing the tunable multi-cone band structure in Bernal bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    12. Xiaoling Sun & Kun Ding, 2018. "Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1735-1748, September.
    13. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Yiwen Zhang & Bo Xie & Yue Yang & Yueshen Wu & Xin Lu & Yuxiong Hu & Yifan Ding & Jiadian He & Peng Dong & Jinghui Wang & Xiang Zhou & Jianpeng Liu & Zhu-Jun Wang & Jun Li, 2024. "Extremely large magnetoresistance in twisted intertwined graphene spirals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Zihe Gao & Haoqi Zhao & Tianwei Wu & Xilin Feng & Zhifeng Zhang & Xingdu Qiao & Ching-Kai Chiu & Liang Feng, 2023. "Topological quadratic-node semimetal in a photonic microring lattice," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    17. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    18. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    19. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
    20. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:95:y:2022:i:6:d:10.1140_epjb_s10051-022-00358-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.