IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33896-4.html
   My bibliography  Save this article

Topological phononics arising from fluid-solid interactions

Author

Listed:
  • Xiaoxiao Wu

    (The University of Hong Kong
    The Hong Kong University of Science and Technology (Guangzhou), Nansha)

  • Haiyan Fan

    (The Hong Kong Polytechnic University, Hung Hom, Kowloon)

  • Tuo Liu

    (Chinese Academy of Sciences)

  • Zhongming Gu

    (Tongji University)

  • Ruo-Yang Zhang

    (The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon)

  • Jie Zhu

    (Tongji University)

  • Xiang Zhang

    (The University of Hong Kong)

Abstract

Nontrivial band topologies have been discovered in classical systems and hold great potential for device applications. Unlike photons, sound has fundamentally different dynamics and symmetries in fluids and solids, represented as scalar and vector fields, respectively. So far, searches for topological phononic materials have only concerned sound in either fluids or solids alone, overlooking their intricate interactions in “mixtures”. Here, we report an approach for topological phononics employing such unique interplay, and demonstrate the realization of type-II nodal rings, elusive in phononics, in a simple three-dimensional phononic crystal. Type-II nodal rings, as line degeneracies in momentum space with exotic properties from strong tilting, are directly observed through ultrasonic near-field scanning. Strongly tilted drumhead surface states, the hallmark phenomena, are also experimentally demonstrated. This phononic approach opens a door to explore topological physics in classical systems, which is easy to implement that can be used for designing high-performance acoustic devices.

Suggested Citation

  • Xiaoxiao Wu & Haiyan Fan & Tuo Liu & Zhongming Gu & Ruo-Yang Zhang & Jie Zhu & Xiang Zhang, 2022. "Topological phononics arising from fluid-solid interactions," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33896-4
    DOI: 10.1038/s41467-022-33896-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33896-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33896-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yihao Yang & Zhen Gao & Haoran Xue & Li Zhang & Mengjia He & Zhaoju Yang & Ranjan Singh & Yidong Chong & Baile Zhang & Hongsheng Chen, 2019. "Realization of a three-dimensional photonic topological insulator," Nature, Nature, vol. 565(7741), pages 622-626, January.
    2. Motoaki Hirayama & Ryo Okugawa & Takashi Miyake & Shuichi Murakami, 2017. "Topological Dirac nodal lines and surface charges in fcc alkaline earth metals," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    3. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    4. Weiyin Deng & Jiuyang Lu & Feng Li & Xueqin Huang & Mou Yan & Jiahong Ma & Zhengyou Liu, 2019. "Nodal rings and drumhead surface states in phononic crystals," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    5. Biao Yang & Yangang Bi & Rui-Xing Zhang & Ruo-Yang Zhang & Oubo You & Zhihong Zhu & Jing Feng & Hongbo Sun & C. T. Chan & Chao-Xing Liu & Shuang Zhang, 2021. "Momentum space toroidal moment in a photonic metamaterial," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Qinghua Guo & Tianshu Jiang & Ruo-Yang Zhang & Lei Zhang & Zhao-Qing Zhang & Biao Yang & Shuang Zhang & C. T. Chan, 2021. "Experimental observation of non-Abelian topological charges and edge states," Nature, Nature, vol. 594(7862), pages 195-200, June.
    7. Wenlong Gao & Biao Yang & Ben Tremain & Hongchao Liu & Qinghua Guo & Lingbo Xia & Alastair P. Hibbins & Shuang Zhang, 2018. "Experimental observation of photonic nodal line degeneracies in metacrystals," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    8. Hailong He & Chunyin Qiu & Liping Ye & Xiangxi Cai & Xiying Fan & Manzhu Ke & Fan Zhang & Zhengyou Liu, 2018. "Topological negative refraction of surface acoustic waves in a Weyl phononic crystal," Nature, Nature, vol. 560(7716), pages 61-64, August.
    9. S. Hossein Mousavi & Alexander B. Khanikaev & Zheng Wang, 2015. "Topologically protected elastic waves in phononic metamaterials," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weitao Yuan & Chenwen Yang & Danmei Zhang & Yang Long & Yongdong Pan & Zheng Zhong & Hong Chen & Jinfeng Zhao & Jie Ren, 2021. "Observation of elastic spin with chiral meta-sources," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Li, Binsheng & Chen, Hui & Xia, Baizhan & Yao, Lingyun, 2023. "Acoustic energy harvesting based on topological states of multi-resonant phononic crystals," Applied Energy, Elsevier, vol. 341(C).
    3. Simone Zanotto & Giorgio Biasiol & Paulo V. Santos & Alessandro Pitanti, 2022. "Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    5. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    6. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    7. Ji-Qian Wang & Zi-Dong Zhang & Si-Yuan Yu & Hao Ge & Kang-Fu Liu & Tao Wu & Xiao-Chen Sun & Le Liu & Hua-Yang Chen & Cheng He & Ming-Hui Lu & Yan-Feng Chen, 2022. "Extended topological valley-locked surface acoustic waves," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Lei Huang & Lu He & Weixuan Zhang & Huizhen Zhang & Dongning Liu & Xue Feng & Fang Liu & Kaiyu Cui & Yidong Huang & Wei Zhang & Xiangdong Zhang, 2024. "Hyperbolic photonic topological insulators," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    10. Qianlong Kang & Fujia Chen & Hongyong Mao & Keya Zhou & Kai Guo & Shutian Liu & Zhongyi Guo, 2023. "Dual-band valley-protected topological edge states in graphene-like phononic crystals with waveguide," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-7, March.
    11. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Midya Parto & Christian Leefmans & James Williams & Franco Nori & Alireza Marandi, 2023. "Non-Abelian effects in dissipative photonic topological lattices," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    13. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
    14. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    15. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    16. Chen, Yuanhan, 2024. "Cleaning Russian oil industry for energy resource exploration and industrial transformation towards zero carbon green recovery: Role of inclusive digital finance," Resources Policy, Elsevier, vol. 88(C).
    17. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    18. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    19. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    20. Shiming Lei & Kevin Allen & Jianwei Huang & Jaime M. Moya & Tsz Chun Wu & Brian Casas & Yichen Zhang & Ji Seop Oh & Makoto Hashimoto & Donghui Lu & Jonathan Denlinger & Chris Jozwiak & Aaron Bostwick , 2023. "Weyl nodal ring states and Landau quantization with very large magnetoresistance in square-net magnet EuGa4," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33896-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.