IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36714-7.html
   My bibliography  Save this article

Hybrid molecular graphene transistor as an operando and optoelectronic platform

Author

Listed:
  • Jorge Trasobares

    (IMDEA-Nanociencia, Cantoblanco
    Universidad Complutense de Madrid)

  • Juan Carlos Martín-Romano

    (IMDEA-Nanociencia, Cantoblanco)

  • Muhammad Waqas Khaliq

    (ALBA Synchrotron, Carrer de la llum 2-26
    University of Barcelona)

  • Sandra Ruiz-Gómez

    (ALBA Synchrotron, Carrer de la llum 2-26)

  • Michael Foerster

    (ALBA Synchrotron, Carrer de la llum 2-26)

  • Miguel Ángel Niño

    (ALBA Synchrotron, Carrer de la llum 2-26)

  • Patricia Pedraz

    (IMDEA-Nanociencia, Cantoblanco)

  • Yannick. J. Dappe

    (Centro de Astrobiología (CSIC-INTA))

  • Marina Calero Ory

    (SPEC, CEA, CNRS Université Paris‐Saclay)

  • Julia García-Pérez

    (IMDEA-Nanociencia, Cantoblanco)

  • María Acebrón

    (IMDEA-Nanociencia, Cantoblanco)

  • Manuel Rodríguez Osorio

    (IMDEA-Nanociencia, Cantoblanco)

  • María Teresa Magaz

    (Centro de Astrobiología (CSIC-INTA))

  • Alicia Gomez

    (Centro de Astrobiología (CSIC-INTA))

  • Rodolfo Miranda

    (SPEC, CEA, CNRS Université Paris‐Saclay
    Universidad Autónoma de Madrid)

  • Daniel Granados

    (IMDEA-Nanociencia, Cantoblanco)

Abstract

Lack of reproducibility hampers molecular devices integration into large-scale circuits. Thus, incorporating operando characterization can facilitate the understanding of multiple features producing disparities in different devices. In this work, we report the realization of hybrid molecular graphene field effect transistors (m-GFETs) based on 11-(Ferrocenyl)undecanethiol (FcC11SH) micro self-assembled monolayers (μSAMs) and high-quality graphene (Gr) in a back-gated configuration. On the one hand, Gr enables redox electron transfer, avoids molecular degradation and permits operando spectroscopy. On the other hand, molecular electrode decoration shifts the Gr Dirac point (VDP) to neutrality and generates a photocurrent in the Gr electron conduction regime. Benefitting from this heterogeneous response, the m-GFETs can implement optoelectronic AND/OR logic functions. Our approach represents a step forward in the field of molecular scale electronics with implications in sensing and computing based on sustainable chemicals.

Suggested Citation

  • Jorge Trasobares & Juan Carlos Martín-Romano & Muhammad Waqas Khaliq & Sandra Ruiz-Gómez & Michael Foerster & Miguel Ángel Niño & Patricia Pedraz & Yannick. J. Dappe & Marina Calero Ory & Julia García, 2023. "Hybrid molecular graphene transistor as an operando and optoelectronic platform," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36714-7
    DOI: 10.1038/s41467-023-36714-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36714-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36714-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. N. Clément & K. Nishiguchi & A. Fujiwara & D. Vuillaume, 2010. "One-by-one trap activation in silicon nanowire transistors," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    2. Michael N. Leuenberger & Daniel Loss, 2001. "Quantum computing in molecular magnets," Nature, Nature, vol. 410(6830), pages 789-793, April.
    3. Gabriel Puebla-Hellmann & Koushik Venkatesan & Marcel Mayor & Emanuel Lörtscher, 2018. "Metallic nanoparticle contacts for high-yield, ambient-stable molecular-monolayer devices," Nature, Nature, vol. 559(7713), pages 232-235, July.
    4. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    2. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    3. Chenli Huang & Rong Sun & Lipiao Bao & Xinyue Tian & Changwang Pan & Mengyang Li & Wangqiang Shen & Kun Guo & Bingwu Wang & Xing Lu & Song Gao, 2023. "A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    4. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    5. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    6. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    7. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    9. Xuefei Liu & Zhaocai Zhang & Bing Lv & Zhao Ding & Zijiang Luo, 2021. "Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-7, January.
    10. Cafaro, Carlo, 2017. "Geometric algebra and information geometry for quantum computational software," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 154-196.
    11. Dylan Errulat & Katie L. M. Harriman & Diogo A. Gálico & Elvin V. Salerno & Johan Tol & Akseli Mansikkamäki & Mathieu Rouzières & Stephen Hill & Rodolphe Clérac & Muralee Murugesu, 2024. "Slow magnetic relaxation in a europium(II) complex," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Anna M. Seiler & Nils Jacobsen & Martin Statz & Noelia Fernandez & Francesca Falorsi & Kenji Watanabe & Takashi Taniguchi & Zhiyu Dong & Leonid S. Levitov & R. Thomas Weitz, 2024. "Probing the tunable multi-cone band structure in Bernal bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    14. Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Xiaoling Sun & Kun Ding, 2018. "Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1735-1748, September.
    16. Andreas Sinner & Gregor Tkachov, 2022. "Diffusive transport in the lowest Landau level of disordered 2d semimetals: the mean-square-displacement approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-17, June.
    17. Kashyap, Ravi, 2021. "Artificial Intelligence: A Child’s Play," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    18. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Andrea Mattioni & Jakob K. Staab & William J. A. Blackmore & Daniel Reta & Jake Iles-Smith & Ahsan Nazir & Nicholas F. Chilton, 2024. "Vibronic effects on the quantum tunnelling of magnetisation in Kramers single-molecule magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    20. Yiwen Zhang & Bo Xie & Yue Yang & Yueshen Wu & Xin Lu & Yuxiong Hu & Yifan Ding & Jiadian He & Peng Dong & Jinghui Wang & Xiang Zhou & Jianpeng Liu & Zhu-Jun Wang & Jun Li, 2024. "Extremely large magnetoresistance in twisted intertwined graphene spirals," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36714-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.