IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37197-2.html
   My bibliography  Save this article

Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems

Author

Listed:
  • Lijun Zhu

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Xiaoqiang Liu

    (Peking University)

  • Lin Li

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

  • Xinyi Wan

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Ran Tao

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Zhongniu Xie

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Ji Feng

    (Peking University
    Hefei National Laboratory)

  • Changgan Zeng

    (University of Science and Technology of China
    University of Science and Technology of China
    Hefei National Laboratory)

Abstract

The distinguishing feature of a quantum system is interference arising from the wave mechanical nature of particles which is clearly central to macroscopic electronic properties. Here, we report the signature of quantum interference effect in inter-layer transport process. Via systematic magneto-drag experiments on graphene-based electronic double-layer systems, we observe low-field correction to the Coulomb-scattering-dominated inter-layer drag resistance in a wide range of temperature and carrier density, with its characteristics sensitive to the band topology of graphene layers. These observations can be attributed to a new type of quantum interference between drag processes, with the interference pathway comprising different carrier diffusion paths in the two constituent conductors. The emergence of such effect relies on the formation of superimposing planar diffusion paths, among which the impurity potentials from intermediate insulating spacer play an essential role. Our findings establish an ideal platform where the interplay between quantum interference and many-body interaction is essential.

Suggested Citation

  • Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37197-2
    DOI: 10.1038/s41467-023-37197-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37197-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37197-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. P. Eisenstein & A. H. MacDonald, 2004. "Bose–Einstein condensation of excitons in bilayer electron systems," Nature, Nature, vol. 432(7018), pages 691-694, December.
    2. Markus Arndt & Olaf Nairz & Julian Vos-Andreae & Claudia Keller & Gerbrand van der Zouw & Anton Zeilinger, 1999. "Wave–particle duality of C60 molecules," Nature, Nature, vol. 401(6754), pages 680-682, October.
    3. D. Nandi & A. D. K. Finck & J. P. Eisenstein & L. N. Pfeiffer & K. W. West, 2012. "Exciton condensation and perfect Coulomb drag," Nature, Nature, vol. 488(7412), pages 481-484, August.
    4. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    5. Yuanbo Zhang & Yan-Wen Tan & Horst L. Stormer & Philip Kim, 2005. "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, Nature, vol. 438(7065), pages 201-204, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    2. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    3. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Qiangsheng Lu & Jacob Cook & Xiaoqian Zhang & Kyle Y. Chen & Matthew Snyder & Duy Tung Nguyen & P. V. Sreenivasa Reddy & Bingchao Qin & Shaoping Zhan & Li-Dong Zhao & Pawel J. Kowalczyk & Simon A. Bro, 2022. "Realization of unpinned two-dimensional dirac states in antimony atomic layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Zhen Lian & Dongxue Chen & Lei Ma & Yuze Meng & Ying Su & Li Yan & Xiong Huang & Qiran Wu & Xinyue Chen & Mark Blei & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao , 2023. "Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    7. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    8. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    9. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    10. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    11. Xuefei Liu & Zhaocai Zhang & Bing Lv & Zhao Ding & Zijiang Luo, 2021. "Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-7, January.
    12. Timon Rabczuk & Mohammad Reza Azadi Kakavand & Raahul Palanivel Uma & Ali Hossein Nezhad Shirazi & Meysam Makaremi, 2018. "Thermal Conductance along Hexagonal Boron Nitride and Graphene Grain Boundaries," Energies, MDPI, vol. 11(6), pages 1-14, June.
    13. Jonathan Oppenheim & Carlo Sparaciari & Barbara Šoda & Zachary Weller-Davies, 2023. "Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    14. Yekai Song & Chunjing Jia & Hongyu Xiong & Binbin Wang & Zhicheng Jiang & Kui Huang & Jinwoong Hwang & Zhuojun Li & Choongyu Hwang & Zhongkai Liu & Dawei Shen & Jonathan A. Sobota & Patrick Kirchmann , 2023. "Signatures of the exciton gas phase and its condensation in monolayer 1T-ZrTe2," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    15. Anna M. Seiler & Nils Jacobsen & Martin Statz & Noelia Fernandez & Francesca Falorsi & Kenji Watanabe & Takashi Taniguchi & Zhiyu Dong & Leonid S. Levitov & R. Thomas Weitz, 2024. "Probing the tunable multi-cone band structure in Bernal bilayer graphene," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Wenjun Cui & Weixiao Lin & Weichao Lu & Chengshan Liu & Zhixiao Gao & Hao Ma & Wen Zhao & Gustaaf Tendeloo & Wenyu Zhao & Qingjie Zhang & Xiahan Sang, 2023. "Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Xiaoling Sun & Kun Ding, 2018. "Identifying and tracking scientific and technological knowledge memes from citation networks of publications and patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 1735-1748, September.
    18. Andreas Sinner & Gregor Tkachov, 2022. "Diffusive transport in the lowest Landau level of disordered 2d semimetals: the mean-square-displacement approach," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(6), pages 1-17, June.
    19. Mussad M. Alzahrani & Anurag Roy & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Investigation of Thermal Stress Arising in a Graphene Neutral Density Filter for Concentrated Photovoltaic System," Energies, MDPI, vol. 14(12), pages 1-9, June.
    20. Meng Zhao & Zhongjie Wang & Lu Liu & Chunzheng Wang & Cheng-Yen Liu & Fang Yang & Hua Wu & Chunlei Gao, 2024. "Atomic-scale visualization of the interlayer Rydberg exciton complex in moiré heterostructures," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37197-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.