IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26663-4.html
   My bibliography  Save this article

Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects

Author

Listed:
  • M. T. Greenaway

    (Loughborough University
    University of Nottingham)

  • P. Kumaravadivel

    (University of Manchester
    University of Manchester)

  • J. Wengraf

    (University of Manchester
    University of Lancaster)

  • L. A. Ponomarenko

    (University of Manchester
    University of Lancaster)

  • A. I. Berdyugin

    (University of Manchester)

  • J. Li

    (Kansas State University)

  • J. H. Edgar

    (Kansas State University)

  • R. Krishna Kumar

    (University of Manchester)

  • A. K. Geim

    (University of Manchester
    University of Manchester)

  • L. Eaves

    (University of Nottingham
    University of Manchester)

Abstract

Oscillatory magnetoresistance measurements on graphene have revealed a wealth of novel physics. These phenomena are typically studied at low currents. At high currents, electrons are driven far from equilibrium with the atomic lattice vibrations so that their kinetic energy can exceed the thermal energy of the phonons. Here, we report three non-equilibrium phenomena in monolayer graphene at high currents: (i) a “Doppler-like” shift and splitting of the frequencies of the transverse acoustic (TA) phonons emitted when the electrons undergo inter-Landau level (LL) transitions; (ii) an intra-LL Mach effect with the emission of TA phonons when the electrons approach supersonic speed, and (iii) the onset of elastic inter-LL transitions at a critical carrier drift velocity, analogous to the superfluid Landau velocity. All three quantum phenomena can be unified in a single resonance equation. They offer avenues for research on out-of-equilibrium phenomena in other two-dimensional fermion systems.

Suggested Citation

  • M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26663-4
    DOI: 10.1038/s41467-021-26663-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26663-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26663-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Kumaravadivel & M. T. Greenaway & D. Perello & A. Berdyugin & J. Birkbeck & J. Wengraf & S. Liu & J. H. Edgar & A. K. Geim & L. Eaves & R. Krishna Kumar, 2019. "Strong magnetophonon oscillations in extra-large graphene," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    2. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    3. Yuanbo Zhang & Yan-Wen Tan & Horst L. Stormer & Philip Kim, 2005. "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, Nature, vol. 438(7065), pages 201-204, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    2. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Qiangsheng Lu & Jacob Cook & Xiaoqian Zhang & Kyle Y. Chen & Matthew Snyder & Duy Tung Nguyen & P. V. Sreenivasa Reddy & Bingchao Qin & Shaoping Zhan & Li-Dong Zhao & Pawel J. Kowalczyk & Simon A. Bro, 2022. "Realization of unpinned two-dimensional dirac states in antimony atomic layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Aaron H. Barajas-Aguilar & Jasen Zion & Ian Sequeira & Andrew Z. Barabas & Takashi Taniguchi & Kenji Watanabe & Eric B. Barrett & Thomas Scaffidi & Javier D. Sanchez-Yamagishi, 2024. "Electrically driven amplification of terahertz acoustic waves in graphene," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    10. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    11. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
    13. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    14. Daniel Vaquero & Vito Clericò & Michael Schmitz & Juan Antonio Delgado-Notario & Adrian Martín-Ramos & Juan Salvador-Sánchez & Claudius S. A. Müller & Km Rubi & Kenji Watanabe & Takashi Taniguchi & Be, 2023. "Phonon-mediated room-temperature quantum Hall transport in graphene," Nature Communications, Nature, vol. 14(1), pages 1-6, December.
    15. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    16. Daiyu Geng & Hui Zhou & Shaosheng Yue & Zhenyu Sun & Peng Cheng & Lan Chen & Sheng Meng & Kehui Wu & Baojie Feng, 2022. "Observation of gapped Dirac cones in a two-dimensional Su-Schrieffer-Heeger lattice," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    17. Chen, Yuanhan, 2024. "Cleaning Russian oil industry for energy resource exploration and industrial transformation towards zero carbon green recovery: Role of inclusive digital finance," Resources Policy, Elsevier, vol. 88(C).
    18. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    19. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    20. Benyahia, Ahmed & Bouamrane, Rachid, 2023. "Modelling the minimum conductivity of graphene using random resistor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26663-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.