IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v58y2016icp976-1006.html
   My bibliography  Save this article

Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs

Author

Listed:
  • Kumar, Rajesh
  • Singh, Rajesh Kumar
  • Singh, Dinesh Pratap

Abstract

Carbon nanomaterials have huge potential in the field of energy and environmental applications. However, a wide range of greener and environment friendly synthesis methods utilizing natural, renewable, cheaper waste materials has to be developed. This will lead to the reduction of green house gases, exploitation of toxic materials and helps in the development of sustainable technologies. In this review, the details progress made in the last ten years concerning the synthesis of new one dimensional (carbon nanotubes CNT, carbon nanofiber) and two dimensional (graphene) carbon based materials using natural precursors and waste materials is summarized. The aim of this review paper is to provide a comprehensive scientific progress of synthesis of graphene and carbon nanotubes using natural precursor and waste materials for the future perspective. This paper also concludes with a brief discussion on the impact of natural precursor for the graphene and CNTs for environment, its toxicological effects and its future prospects in this rapidly emerging field. Natural precursors and waste carbon containing products are emerging as a new class of materials that have efficiency to produce graphene and CNTs. The various synthesis processes of graphene, CNTs and carbon dots has been reported using several natural hydrocarbon precursors (turpentine oil, eucalyptus oil, palm oil, neem oil, sunflower oil, castor oil, biodiesel, tea-tree extract, honey, milk, sugar, butter, egg etc.). Also, some research groups have used foods wastes (cookie and chocolate), vegetation wastes (woods, leaf, grass, fruit wastes), animal/bird/insect wastes (bone and cow dung, dog feces, chicken feather) and agro waste (sugarcane bagasse) for the synthesis of graphene and CNTs. Research on natural hydrocarbon precursors and wastage materials has increased in recent years as they promise to produce better and high quality of graphene and CNTs in large quantities. The fascinating aspect of this research area is that it guides the use of natural hydrocarbons to explore the possibilities of improving graphene stability and robustness suitable for different type of applications.

Suggested Citation

  • Kumar, Rajesh & Singh, Rajesh Kumar & Singh, Dinesh Pratap, 2016. "Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: Graphene and CNTs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 976-1006.
  • Handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:976-1006
    DOI: 10.1016/j.rser.2015.12.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115015038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.12.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Lin & Zhiwei Peng & Yuanyue Liu & Francisco Ruiz-Zepeda & Ruquan Ye & Errol L. G. Samuel & Miguel Jose Yacaman & Boris I. Yakobson & James M. Tour, 2014. "Laser-induced porous graphene films from commercial polymers," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    2. K. S. Novoselov & A. K. Geim & S. V. Morozov & D. Jiang & M. I. Katsnelson & I. V. Grigorieva & S. V. Dubonos & A. A. Firsov, 2005. "Two-dimensional gas of massless Dirac fermions in graphene," Nature, Nature, vol. 438(7065), pages 197-200, November.
    3. Zhengzong Sun & Zheng Yan & Jun Yao & Elvira Beitler & Yu Zhu & James M. Tour, 2010. "Growth of graphene from solid carbon sources," Nature, Nature, vol. 468(7323), pages 549-552, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salisu Nasir & Mohd Zobir Hussein & Zulkarnain Zainal & Nor Azah Yusof & Syazwan Afif Mohd Zobir, 2018. "Electrochemical Energy Storage Potentials of Waste Biomass: Oil Palm Leaf- and Palm Kernel Shell-Derived Activated Carbons," Energies, MDPI, vol. 11(12), pages 1-22, December.
    2. Chen, Xiaoqing & Ali, Imdad & Song, Lijian & Song, Peng & Zhang, Youchen & Maria, Semeniuk & Nazmus, Saadat & Yang, Weimin & Dhakal, Hom Nath & Li, Haoyi & Sain, Mohini & Ramakrishna, Seeram, 2020. "A review on recent advancement of nano-structured-fiber-based metal-air batteries and future perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Promdee, Kittiphop & Chanvidhwatanakit, Jirawat & Satitkune, Somruedee & Boonmee, Chakkrich & Kawichai, Thitipong & Jarernprasert, Sittipong & Vitidsant, Tharapong, 2017. "Characterization of carbon materials and differences from activated carbon particle (ACP) and coal briquettes product (CBP) derived from coconut shell via rotary kiln," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1175-1186.
    4. Fitranto Kusumo & T.M.I. Mahlia & A.H. Shamsuddin & Hwai Chyuan Ong & A.R Ahmad & Z. Ismail & Z.C. Ong & A.S. Silitonga, 2019. "The Effect of Multi-Walled Carbon Nanotubes-Additive in Physicochemical Property of Rice Brand Methyl Ester: Optimization Analysis," Energies, MDPI, vol. 12(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anffany Chen & Hauke Brand & Tobias Helbig & Tobias Hofmann & Stefan Imhof & Alexander Fritzsche & Tobias Kießling & Alexander Stegmaier & Lavi K. Upreti & Titus Neupert & Tomáš Bzdušek & Martin Greit, 2023. "Hyperbolic matter in electrical circuits with tunable complex phases," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    3. Jung Bae Lee & Jina Jang & Haoyu Zhou & Yoonjae Lee & Jung Bin In, 2020. "Densified Laser-Induced Graphene for Flexible Microsupercapacitors," Energies, MDPI, vol. 13(24), pages 1-9, December.
    4. Wang, Qing & Han, Ning & Bokhari, Awais & Li, Xue & Cao, Yue & Asif, Saira & Shen, Zhengfeng & Si, Weimeng & Wang, Fagang & Klemeš, Jiří Jaromír & Zhao, Xiaolin, 2022. "Insights into MXenes-based electrocatalysts for oxygen reduction," Energy, Elsevier, vol. 255(C).
    5. Di Molfetta, Giuseppe & Brachet, Marc & Debbasch, Fabrice, 2014. "Quantum walks in artificial electric and gravitational fields," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 397(C), pages 157-168.
    6. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    7. Juntao Zhang & Xiaozhi Liu & Yujin Ji & Xuerui Liu & Dong Su & Zhongbin Zhuang & Yu-Chung Chang & Chih-Wen Pao & Qi Shao & Zhiwei Hu & Xiaoqing Huang, 2023. "Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Cao, Rui-rui & Li, Xuan & Chen, Sai & Yuan, Hao-ran & Zhang, Xing-xiang, 2017. "Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites," Energy, Elsevier, vol. 138(C), pages 157-166.
    9. González, Ander & Goikolea, Eider & Barrena, Jon Andoni & Mysyk, Roman, 2016. "Review on supercapacitors: Technologies and materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1189-1206.
    10. Dasari, Bhagya Lakshmi & Nouri, Jamshid M. & Brabazon, Dermot & Naher, Sumsun, 2017. "Graphene and derivatives – Synthesis techniques, properties and their energy applications," Energy, Elsevier, vol. 140(P1), pages 766-778.
    11. Chen, Yuanhan, 2024. "Cleaning Russian oil industry for energy resource exploration and industrial transformation towards zero carbon green recovery: Role of inclusive digital finance," Resources Policy, Elsevier, vol. 88(C).
    12. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    13. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    14. Maria Karaulova & Abdullah Gök & Oliver Shackleton & Philip Shapira, 2016. "Science system path-dependencies and their influences: nanotechnology research in Russia," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 645-670, May.
    15. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Kumar, Rajesh & Joanni, Ednan & Savu, Raluca & Pereira, Matheus S. & Singh, Rajesh K. & Constantino, Carlos J.L. & Kubota, Lauro T. & Matsuda, Atsunori & Moshkalev, Stanislav A., 2019. "Fabrication and electrochemical evaluation of micro-supercapacitors prepared by direct laser writing on free-standing graphite oxide paper," Energy, Elsevier, vol. 179(C), pages 676-684.
    17. Ying Zhou & Hongqian Mu & Tongbiao Wang & Tianbao Yu & Qinghua Liao, 2022. "Tunable broadband superradiance near a graphene/hyperbolic metamaterial/graphene sandwich structure," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(11), pages 1-10, November.
    18. Li, Yong & Yang, Jie & Song, Jian, 2016. "Structural model, size effect and nano-energy system design for more sustainable energy of solid state automotive battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 685-697.
    19. Benyahia, Ahmed & Bouamrane, Rachid, 2023. "Modelling the minimum conductivity of graphene using random resistor networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    20. Xuefei Liu & Zhaocai Zhang & Bing Lv & Zhao Ding & Zijiang Luo, 2021. "Impact of the vertical strain on the Schottky barrier height for graphene/AlN heterojunction: a study by the first-principles method," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-7, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:58:y:2016:i:c:p:976-1006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.