IDEAS home Printed from https://ideas.repec.org/a/spr/eurphb/v88y2015i12p1-810.1140-epjb-e2015-60568-4.html
   My bibliography  Save this article

Contrasting effects of strong ties on SIR and SIS processes in temporal networks

Author

Listed:
  • Kaiyuan Sun
  • Andrea Baronchelli
  • Nicola Perra

Abstract

Most real networks are characterized by connectivity patterns that evolve in time following complex, non-Markovian, dynamics. Here we investigate the impact of this ubiquitous feature by studying the Susceptible-Infected-Recovered (SIR) and Susceptible-Infected-Susceptible (SIS) epidemic models on activity driven networks with and without memory (i.e., Markovian and non-Markovian). We find that memory inhibits the spreading process in SIR models by shifting the epidemic threshold to larger values and reducing the final fraction of recovered nodes. On the contrary, in SIS processes memory reduces the epidemic threshold and, for a wide range of disease parameters, increases the fraction of nodes affected by the disease in the endemic state. The heterogeneity in tie strengths, and the frequent repetition of strong ties it entails, allows in fact less virulent SIS-like diseases to survive in tightly connected local clusters that serve as reservoir for the virus. We validate this picture by studying both processes on two real temporal networks. Copyright The Author(s) 2015

Suggested Citation

  • Kaiyuan Sun & Andrea Baronchelli & Nicola Perra, 2015. "Contrasting effects of strong ties on SIR and SIS processes in temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(12), pages 1-8, December.
  • Handle: RePEc:spr:eurphb:v:88:y:2015:i:12:p:1-8:10.1140/epjb/e2015-60568-4
    DOI: 10.1140/epjb/e2015-60568-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1140/epjb/e2015-60568-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1140/epjb/e2015-60568-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    2. Caldarelli, Guido, 2007. "Scale-Free Networks: Complex Webs in Nature and Technology," OUP Catalogue, Oxford University Press, number 9780199211517, Decembrie.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Dong & Chow, Tommy W.S. & Zhong, Lu & Zhang, Qingpeng, 2018. "The competitive information spreading over multiplex social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 981-990.
    2. Yang, Dong & Chow, Tommy W.S. & Zhong, Lu & Tian, Zhaoyang & Zhang, Qingpeng & Chen, Guanrong, 2018. "True and fake information spreading over the Facebook," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 984-994.
    3. Hong, Xiao & Han, Yuexing & Wang, Bing, 2023. "Impacts of detection and contact tracing on the epidemic spread in time-varying networks," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    4. Dun, Han & Shuting, Yan & She, Han & Lingfei, Qian & Chris, Ampimah Benjamin, 2019. "Research on how the difference of personal propagation ability influences the epidemic spreading in activity-driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 311-318.
    5. An, Xuming & Ding, Li & Hu, Ping, 2020. "Information propagation with individual attention-decay effect on activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    6. Ayana Aspembitova & Ling Feng & Valentin Melnikov & Lock Yue Chew, 2019. "Fitness preferential attachment as a driving mechanism in bitcoin transaction network," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Garlaschelli & Maria I. Loffredo, 2007. "Effects of network topology on wealth distributions," Papers 0711.4710, arXiv.org, revised Jan 2008.
    2. Ya-Chun Gao & Zong-Wen Wei & Bing-Hong Wang, 2013. "Dynamic Evolution Of Financial Network And Its Relation To Economic Crises," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-10.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    5. Hutzler, S. & Sommer, C. & Richmond, P., 2016. "On the relationship between income, fertility rates and the state of democracy in society," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 9-18.
    6. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    7. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    8. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    9. Macon, Kevin T. & Mucha, Peter J. & Porter, Mason A., 2012. "Community structure in the United Nations General Assembly," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 343-361.
    10. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    11. Tsekeris, Theodore, 2016. "Interregional trade network analysis for road freight transport in Greece," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 132-148.
    12. F. Daolio & M. Tomassini & K. Bitkov, 2011. "The Swiss board directors network in 2009," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 82(3), pages 349-359, August.
    13. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurphb:v:88:y:2015:i:12:p:1-8:10.1140/epjb/e2015-60568-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.