IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0219346.html
   My bibliography  Save this article

Fitness preferential attachment as a driving mechanism in bitcoin transaction network

Author

Listed:
  • Ayana Aspembitova
  • Ling Feng
  • Valentin Melnikov
  • Lock Yue Chew

Abstract

Bitcoin is the earliest cryptocurrency and among the most successful ones to date. Recently, its dynamical evolution has attracted the attention of the research community due to its completeness and richness in historical records. In this paper, we focus on the detailed evolution of bitcoin trading with the aim of elucidating the mechanism that drives the formation of the bitcoin transaction network. Our empirical investigation reveals that although the temporal properties of the transaction network possesses scale-free degree distribution like many other networks, its formation mechanism is different from the commonly assumed models of degree preferential attachment or wealth preferential attachment. By defining the fitness value of each node as the ability of the node to attract new connections, we have instead uncovered that the observed scale-free degree distribution results from the intrinsic fitness of each node following a power-law distribution. Our finding thus suggests that the “good-get-richer” rather than the “rich-get-richer” paradigm operates within the bitcoin ecosystem. Based on these findings, we propose a model that captures the temporal generative process by means of a fitness preferential attachment and data-driven birth/death mechanism. Our proposed model is able to produce structural properties in good agreement with those obtained from the empirical bitcoin network.

Suggested Citation

  • Ayana Aspembitova & Ling Feng & Valentin Melnikov & Lock Yue Chew, 2019. "Fitness preferential attachment as a driving mechanism in bitcoin transaction network," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-20, August.
  • Handle: RePEc:plo:pone00:0219346
    DOI: 10.1371/journal.pone.0219346
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219346
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0219346&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0219346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ingo Scholtes & Nicolas Wider & Antonios Garas, 2016. "Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(3), pages 1-15, March.
    2. Taro Takaguchi & Yosuke Yano & Yuichi Yoshida, 2016. "Coverage centralities for temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-11, February.
    3. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    4. Andreas Klaus & Shan Yu & Dietmar Plenz, 2011. "Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    5. Jeff Alstott & Ed Bullmore & Dietmar Plenz, 2014. "powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    6. D'aniel Kondor & M'arton P'osfai & Istv'an Csabai & G'abor Vattay, 2013. "Do the rich get richer? An empirical analysis of the BitCoin transaction network," Papers 1308.3892, arXiv.org, revised Mar 2014.
    7. Taro Takaguchi & Yosuke Yano & Yuichi Yoshida, 2016. "Coverage centralities for temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(2), pages 1-11, February.
    8. Ingo Scholtes & Nicolas Wider & Antonios Garas, 2016. "Higher-order aggregate networks in the analysis of temporal networks: path structures and centralities," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(3), pages 1-15, March.
    9. Dániel Kondor & Márton Pósfai & István Csabai & Gábor Vattay, 2014. "Do the Rich Get Richer? An Empirical Analysis of the Bitcoin Transaction Network," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-10, February.
    10. Kaiyuan Sun & Andrea Baronchelli & Nicola Perra, 2015. "Contrasting effects of strong ties on SIR and SIS processes in temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(12), pages 1-8, December.
    11. David Garcia & Frank Schweitzer, 2015. "Social signals and algorithmic trading of Bitcoin," Papers 1506.01513, arXiv.org, revised Sep 2015.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zhang & Claudio Tessone, 2024. "Bitcoin Transaction Behavior Modeling Based on Balance Data," Papers 2409.10407, arXiv.org.
    2. Reyns, Ariane, 2024. "What drives businesses to transact with complementary currencies?," Ecological Economics, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Mellor, 2019. "Event Graphs: Advances And Applications Of Second-Order Time-Unfolded Temporal Network Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-26, May.
    2. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-18, August.
    3. Jiaqi Liang & Linjing Li & Daniel Zeng, 2018. "Evolutionary dynamics of cryptocurrency transaction networks: An empirical study," Papers 1808.08585, arXiv.org.
    4. Lars Steinert & Christian Herff, 2018. "Predicting altcoin returns using social media," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-12, December.
    5. Yu Zhang & Claudio Tessone, 2024. "Bitcoin Transaction Behavior Modeling Based on Balance Data," Papers 2409.10407, arXiv.org.
    6. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    7. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    8. Zura Kakushadze & Jim Kyung-Soo Liew, 2018. "CryptoRuble: From Russia with Love," Papers 1801.05760, arXiv.org.
    9. Carolina Mattsson, 2019. "Networks of monetary flow at native resolution," Papers 1910.05596, arXiv.org.
    10. Rodolfo Angelo Magtanggol Iii De Guzman & Mike K. P. So, 2018. "Empirical Analysis Of Bitcoin Prices Using Threshold Time Series Models," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 1-24, December.
    11. Nino Antulov-Fantulin & Dijana Tolic & Matija Piskorec & Zhang Ce & Irena Vodenska, 2018. "Inferring short-term volatility indicators from Bitcoin blockchain," Papers 1809.07856, arXiv.org.
    12. Ayana T Aspembitova & Ling Feng & Lock Yue Chew, 2021. "Behavioral structure of users in cryptocurrency market," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-19, January.
    13. Alexandre Bovet & Carlo Campajola & Jorge F. Lazo & Francesco Mottes & Iacopo Pozzana & Valerio Restocchi & Pietro Saggese & Nicol'o Vallarano & Tiziano Squartini & Claudio J. Tessone, 2018. "Network-based indicators of Bitcoin bubbles," Papers 1805.04460, arXiv.org.
    14. Carlo Campajola & Marco D'Errico & Claudio J. Tessone, 2022. "MicroVelocity: rethinking the Velocity of Money for digital currencies," Papers 2201.13416, arXiv.org, revised May 2023.
    15. Ke Wu & Spencer Wheatley & Didier Sornette, 2018. "Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations," Papers 1803.03088, arXiv.org, revised May 2018.
    16. Ladislav Kristoufek, 2015. "What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-15, April.
    17. Kristoufek, Ladislav, 2018. "On Bitcoin markets (in)efficiency and its evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 257-262.
    18. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    19. Serdar Neslihanoglu, 2021. "Linearity extensions of the market model: a case of the top 10 cryptocurrency prices during the pre-COVID-19 and COVID-19 periods," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-27, December.
    20. Nick James & Kevin Chin, 2021. "On the systemic nature of global inflation, its association with equity markets and financial portfolio implications," Papers 2111.11022, arXiv.org, revised Jan 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0219346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.