IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v439y2023ics0096300322006749.html
   My bibliography  Save this article

Impacts of detection and contact tracing on the epidemic spread in time-varying networks

Author

Listed:
  • Hong, Xiao
  • Han, Yuexing
  • Wang, Bing

Abstract

In the situation of insufficient vaccines and rapid mutation of the virus, detection and contact tracing have been argued to be effective interventions in the containment of emergent epidemics. However, most of previous studies are devoted to data-driven, leading to insufficient understanding of quantifying their effectiveness, especially when individuals’ interactions evolve with time. Here, we aim at quantifying the effectiveness of detection and contact tracing interventions in suppressing the epidemic in time-varying networks. We propose the Susceptible-Exposed-Infected-Removed-Dead-Hospitalized (SEIRDH) model with detection and contact tracing. Under the framework of time-varying networks and with a mean-field approach, we analyze the epidemic thresholds under different situations. Experimental results show that detection can effectively suppress the epidemic spread with an increased epidemic threshold, while the role of tracing depends on the characteristics of the epidemic. When an epidemic is infectious in the incubation period, contact tracing has an obvious effect in suppressing the epidemic spread, but not when the epidemic is not infectious in the incubation. Thus, we apply this framework in real networks to explore possible contact tracing measures by taking use of individuals’ properties. We find that contact tracing based on activity and historical information is more efficient than random contact tracing. Moreover, individuals’ attractiveness and aging effects also affect the efficiency of detection and contact tracing. In conclusion, making full use of individuals’ properties can remarkably improve the effectiveness of detection and contact tracing. The proposed method is expected to provide theoretical guidance for coping with the COVID-19 or other emergent epidemics.

Suggested Citation

  • Hong, Xiao & Han, Yuexing & Wang, Bing, 2023. "Impacts of detection and contact tracing on the epidemic spread in time-varying networks," Applied Mathematics and Computation, Elsevier, vol. 439(C).
  • Handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322006749
    DOI: 10.1016/j.amc.2022.127601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300322006749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2022.127601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manon Ragonnet-Cronin & Olivia Boyd & Lily Geidelberg & David Jorgensen & Fabricia F. Nascimento & Igor Siveroni & Robert A. Johnson & Marc Baguelin & Zulma M. Cucunubá & Elita Jauneikaite & Swapnil M, 2021. "Genetic evidence for the association between COVID-19 epidemic severity and timing of non-pharmaceutical interventions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    2. Luis E C Rocha & Fredrik Liljeros & Petter Holme, 2011. "Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-9, March.
    3. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    4. Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    5. Soya Miyoshi & Marko Jusup & Petter Holme, 2021. "Flexible imitation suppresses epidemics through better vaccination," Journal of Computational Social Science, Springer, vol. 4(2), pages 709-720, November.
    6. Yang, Zimo & Cui, Ai-Xiang & Zhou, Tao, 2011. "Impact of heterogeneous human activities on epidemic spreading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4543-4548.
    7. Alberto Aleta & David Martín-Corral & Ana Pastore y Piontti & Marco Ajelli & Maria Litvinova & Matteo Chinazzi & Natalie E. Dean & M. Elizabeth Halloran & Ira M. Longini Jr & Stefano Merler & Alex Pen, 2020. "Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19," Nature Human Behaviour, Nature, vol. 4(9), pages 964-971, September.
    8. G. Cencetti & G. Santin & A. Longa & E. Pigani & A. Barrat & C. Cattuto & S. Lehmann & M. Salathé & B. Lepri, 2021. "Digital proximity tracing on empirical contact networks for pandemic control," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    10. Wang, Huan & Ma, Chuang & Chen, Han-Shuang & Zhang, Hai-Feng, 2021. "Effects of asymptomatic infection and self-initiated awareness on the coupled disease-awareness dynamics in multiplex networks," Applied Mathematics and Computation, Elsevier, vol. 400(C).
    11. Kaiyuan Sun & Andrea Baronchelli & Nicola Perra, 2015. "Contrasting effects of strong ties on SIR and SIS processes in temporal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(12), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    2. Wang, Ning-Ning & Qiu, Shui-Han & Zhong, Xiao Wen & Di, Zeng-Ru, 2023. "Epidemic thresholds identification of susceptible-infected-recovered model based on the Eigen Microstate," Applied Mathematics and Computation, Elsevier, vol. 449(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Qi & Han, Dun, 2022. "Epidemic spreading in metapopulation networks with heterogeneous mobility rates," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    2. Chen, Yahong & Huang, He, 2022. "Modeling the impacts of contact tracing on an epidemic with asymptomatic infection," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    3. Huang, He & Xu, Yang & Xing, Jingli & Shi, Tianyu, 2023. "Social influence or risk perception? A mathematical model of self-protection against asymptomatic infection in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    4. Meng, Xueyu & Lin, Jianhong & Fan, Yufei & Gao, Fujuan & Fenoaltea, Enrico Maria & Cai, Zhiqiang & Si, Shubin, 2023. "Coupled disease-vaccination behavior dynamic analysis and its application in COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Eugenio Valdano & Davide Colombi & Chiara Poletto & Vittoria Colizza, 2023. "Epidemic graph diagrams as analytics for epidemic control in the data-rich era," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. An, Xuming & Ding, Li & Hu, Ping, 2020. "Information propagation with individual attention-decay effect on activity-driven networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    7. Li, Tangjuan & Xiao, Yanni, 2023. "Optimal strategies for coordinating infection control and socio-economic activities," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 533-555.
    8. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    9. Bernardo García Bulle Bueno & Abigail L. Horn & Brooke M. Bell & Mohsen Bahrami & Burçin Bozkaya & Alex Pentland & Kayla Haye & Esteban Moro, 2024. "Effect of mobile food environments on fast food visits," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    10. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. David Ehrlich & Nora Szech, 2022. "How To Start a Grassroots Movement," Papers 2209.01345, arXiv.org.
    12. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    14. Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
    15. Heetae Kim & Petter Holme, 2015. "Network Theory Integrated Life Cycle Assessment for an Electric Power System," Sustainability, MDPI, vol. 7(8), pages 1-15, August.
    16. Umit Cirakli & Ibrahim Dogan & Mehmet Gozlu, 2022. "The Relationship Between COVID-19 Cases and COVID-19 Testing: a Panel Data Analysis on OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 13(3), pages 1737-1750, September.
    17. Beatrice Casati & Joseph Peter Verdi & Alexander Hempelmann & Maximilian Kittel & Andrea Gutierrez Klaebisch & Bianca Meister & Sybille Welker & Sonal Asthana & Salvatore Giorgio & Pavle Boskovic & Ka, 2022. "Rapid, adaptable and sensitive Cas13-based COVID-19 diagnostics using ADESSO," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    18. Jiang, Jiehui & Ma, Jie, 2023. "Dynamic analysis of pandemic cross-regional transmission considering quarantine strategies in the context of limited medical resources," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    19. Hasan Alp Boz & Mohsen Bahrami & Selim Balcisoy & Burcin Bozkaya & Nina Mazar & Aaron Nichols & Alex Pentland, 2024. "Investigating neighborhood adaptability using mobility networks: a case study of the COVID-19 pandemic," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    20. Howell, Bronwyn E. & Potgieter, Petrus H., 2022. "Smartphone-Based COVID-19 contact tracing apps – antipodean insights," 31st European Regional ITS Conference, Gothenburg 2022: Reining in Digital Platforms? Challenging monopolies, promoting competition and developing regulatory regimes 265635, International Telecommunications Society (ITS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:439:y:2023:i:c:s0096300322006749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.