IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v7y2006i3p233-250.html
   My bibliography  Save this article

Energy demand and emissions in 2030 in China: scenarios and policy options

Author

Listed:
  • Kejun Jiang
  • Xiulian Hu

Abstract

Recent rapid growth of energy use in China now exerts great pressure on energy supply and the environment. This study provides scenarios of future energy development and resulting pollutant and greenhouse gas emissions, taking into account the most up-to-date data and recent policy discussions that will affect future economic, industrial, and energy supply trends. To address uncertainties, especially those surrounding the level of energy-intensive production in the next several decades, three scenarios were defined, which reasonably represent the range of plausible futures for energy development. The results from quantitative analysis show that energy demand in China could be as high as 2.9 billion toe (tons oil equivalent) in 2030, which could exceed the available energy supply. When compared with previous energy scenario studies, this result is much higher. By using various policy options discussed in the article, however, there is potential to reduce this high demand to 2.4 billion toe in 2030. Copyright Springer Japan 2006

Suggested Citation

  • Kejun Jiang & Xiulian Hu, 2006. "Energy demand and emissions in 2030 in China: scenarios and policy options," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 7(3), pages 233-250, September.
  • Handle: RePEc:spr:envpol:v:7:y:2006:i:3:p:233-250
    DOI: 10.1007/BF03354001
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF03354001
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF03354001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kejun Jiang & Toshihiko Masui & Tsuneyuki Morita & Yuzuru Matsuoka, 1999. "Long-term emission scenarios for China," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 2(4), pages 267-287, December.
    2. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    3. Paul F. Whiteley (ed.), 1998. "Economic Policy," Books, Edward Elgar Publishing, volume 0, number 996.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    2. Li, Jun, 2008. "Towards a low-carbon future in China's building sector--A review of energy and climate models forecast," Energy Policy, Elsevier, vol. 36(5), pages 1736-1747, May.
    3. Kejun Jiang & Sha Chen & Chenmin He & Jia Liu & Sun Kuo & Li Hong & Songli Zhu & Xiang Pianpian, 2019. "Energy transition, CO2 mitigation, and air pollutant emission reduction: scenario analysis from IPAC model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1277-1293, December.
    4. Wang, Chunyan & Li, Yaqing & Liu, Yi, 2018. "Investigation of water-energy-emission nexus of air pollution control of the coal-fired power industry: A case study of Beijing-Tianjin-Hebei region, China," Energy Policy, Elsevier, vol. 115(C), pages 291-301.
    5. You, Jing, 2013. "China's challenge for decarbonized growth: Forecasts from energy demand models," Journal of Policy Modeling, Elsevier, vol. 35(4), pages 652-668.
    6. Hao, Yu & Zhang, Zong-Yong & Liao, Hua & Wei, Yi-Ming, 2015. "China’s farewell to coal: A forecast of coal consumption through 2020," Energy Policy, Elsevier, vol. 86(C), pages 444-455.
    7. Auffhammer, Maximilian & Carson, Richard T., 2008. "Forecasting the path of China's CO2 emissions using province-level information," Journal of Environmental Economics and Management, Elsevier, vol. 55(3), pages 229-247, May.
    8. Yu, Fanxian & Chen, Jining & Sun, Fu & Zeng, Siyu & Wang, Can, 2011. "Trend of technology innovation in China's coal-fired electricity industry under resource and environmental constraints," Energy Policy, Elsevier, vol. 39(3), pages 1586-1599, March.
    9. Zhou, Kaile & Yang, Shanlin & Shen, Chao & Ding, Shuai & Sun, Chaoping, 2015. "Energy conservation and emission reduction of China’s electric power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 10-19.
    10. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    11. Luderer, Gunnar & Pietzcker, Robert C. & Kriegler, Elmar & Haller, Markus & Bauer, Nico, 2012. "Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R," Energy Economics, Elsevier, vol. 34(S3), pages 378-390.
    12. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    13. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    14. Auffhammer, Maximilian & Carson, Richard T., 2006. "Forecasting the Path of China's CO2 Emissions: Offsetting Kyoto - and Then Some," CUDARE Working Papers 7197, University of California, Berkeley, Department of Agricultural and Resource Economics.
    15. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    16. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torsten Persson & Guido Tabellini, "undated". "Political Institutions and Policy Outcomes: What are the Stylized Facts?," Working Papers 189, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    2. Kenneth Gillingham & William D. Nordhaus & David Anthoff & Geoffrey Blanford & Valentina Bosetti & Peter Christensen & Haewon McJeon & John Reilly & Paul Sztorc, 2015. "Modeling Uncertainty in Climate Change: A Multi-Model Comparison," NBER Working Papers 21637, National Bureau of Economic Research, Inc.
    3. Pamela Wicker & John C. Whitehead & Bruce K. Johnson & Daniel S. Mason, 2016. "Willingness-To-Pay For Sporting Success Of Football Bundesliga Teams," Contemporary Economic Policy, Western Economic Association International, vol. 34(3), pages 446-462, July.
    4. Volker Nocke, 2006. "A Gap for Me: Entrepreneurs and Entry," Journal of the European Economic Association, MIT Press, vol. 4(5), pages 929-956, September.
    5. Pei-Ing Wu & Je-Liang Liou & Hung-Yi Chang, 2015. "Alternative exploration of EKC for $$\hbox {CO}_{2}$$ CO 2 emissions: inclusion of meta-technical ratio in quantile regression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(1), pages 57-73, January.
    6. Stavins, Robert & Hahn, Robert & Cavanagh, Sheila, 2001. "National Environmental Policy During the Clinton Years," RFF Working Paper Series dp-01-38, Resources for the Future.
    7. Babiker, Mustafa & Reilly, John & Ellerman, Denny, 2000. "Japanese Nuclear Power and the Kyoto Agreement," Journal of the Japanese and International Economies, Elsevier, vol. 14(3), pages 169-188, September.
    8. Francesco Passarelli & Guido Tabellini, 2017. "Emotions and Political Unrest," Journal of Political Economy, University of Chicago Press, vol. 125(3), pages 903-946.
    9. Persson, Torsten, 2005. "Forms of Democracy, Policy and Economic Development," CEPR Discussion Papers 4938, C.E.P.R. Discussion Papers.
    10. Timothy Besley & Torsten Persson & Daniel Sturm, 2005. "Political Competition and Economic Performance: Theory and Evidence from the United States," NBER Working Papers 11484, National Bureau of Economic Research, Inc.
    11. Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
    12. Rose, Andrew K & Engel, Charles, 2002. "Currency Unions and International Integration," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(4), pages 1067-1089, November.
    13. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    14. Yamamoto, H. & Yamaji, K. & Fujino, J., 1999. "Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique," Applied Energy, Elsevier, vol. 63(2), pages 101-113, June.
    15. Samuel Fankhauser & Nicholas Stern, 2016. "Climate change, development, poverty and economics," GRI Working Papers 253, Grantham Research Institute on Climate Change and the Environment.
    16. Xiangxiang Sun & Lawrence Loh, 2019. "Sustainability Governance in China: An Analysis of Regional Ecological Efficiency," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    17. Christopher Allsopp, 2002. "The Future of Macroeconomic Policy in the European Union," Discussion Papers 07, Monetary Policy Committee Unit, Bank of England.
    18. Chapman, Duane, 2001. "A Review of the New Undisclosed Conventional Crude Oil Resource Estimates and their Economic and Environmental Implications," Working Papers 179573, Cornell University, Department of Applied Economics and Management.
    19. Klinge Jacobsen, Henrik & Morthorst, Poul Erik & Nielsen, Lise & Stephensen, Peter, 1996. "Sammenkobling af makroøkonomiske og teknisk-økonomiske modeller for energisektoren. Hybris [Integration of bottom-up and top-down models for the energy system: A practical case for Denmark]," MPRA Paper 65676, University Library of Munich, Germany.
    20. Kejun Jiang & Tsuneyuki Morita & Toshihiko Masui & Yuzuru Matsuoka, 2000. "Global long-term greenhouse gas mitigation emission scenarios based on AIM," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 3(2), pages 239-254, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:7:y:2006:i:3:p:233-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.