IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v110y2017icp331-341.html
   My bibliography  Save this article

Improving building energy efficiency in India: State-level analysis of building energy efficiency policies

Author

Listed:
  • Yu, Sha
  • Tan, Qing
  • Evans, Meredydd
  • Kyle, Page
  • Vu, Linh
  • Patel, Pralit L.

Abstract

India is expected to add 40 billion m2 of new buildings till 2050. Buildings are responsible for one third of India's total energy consumption today and building energy use is expected to continue growing driven by rapid income and population growth. The implementation of the Energy Conservation Building Code (ECBC) is one of the measures to improve building energy efficiency. Using the Global Change Assessment Model, this study assesses growth in the buildings sector and impacts of building energy policies in Gujarat, which would help the state adopt ECBC and expand building energy efficiency programs. Without building energy policies, building energy use in Gujarat would grow by 15 times in commercial buildings and 4 times in urban residential buildings between 2010 and 2050. ECBC improves energy efficiency in commercial buildings and could reduce building electricity use in Gujarat by 20% in 2050, compared to the no policy scenario. Having energy codes for both commercial and residential buildings could result in additional 10% savings in electricity use. To achieve these intended savings, it is critical to build capacity and institution for robust code implementation.

Suggested Citation

  • Yu, Sha & Tan, Qing & Evans, Meredydd & Kyle, Page & Vu, Linh & Patel, Pralit L., 2017. "Improving building energy efficiency in India: State-level analysis of building energy efficiency policies," Energy Policy, Elsevier, vol. 110(C), pages 331-341.
  • Handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:331-341
    DOI: 10.1016/j.enpol.2017.07.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517304469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.07.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaturvedi, Vaibhav & Eom, Jiyong & Clarke, Leon E. & Shukla, Priyadarshi R., 2014. "Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework," Energy Policy, Elsevier, vol. 64(C), pages 226-242.
    2. Wang, Lining & Patel, Pralit L. & Yu, Sha & Liu, Bo & McLeod, Jeff & Clarke, Leon E. & Chen, Wenying, 2016. "Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China," Applied Energy, Elsevier, vol. 163(C), pages 244-253.
    3. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    4. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    5. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    6. Page Kyle & Leon Clarke & Fang Rong & Steven J. Smith, 2010. "Climate Policy and the Long-Term Evolution of the U.S. Buildings Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 145-172.
    7. Edmonds, Jae & Reilly, John, 1983. "A long-term global energy- economic model of carbon dioxide release from fossil fuel use," Energy Economics, Elsevier, vol. 5(2), pages 74-88, April.
    8. Eom, Jiyong & Clarke, Leon & Kim, Son H. & Kyle, Page & Patel, Pralit, 2012. "China's building energy demand: Long-term implications from a detailed assessment," Energy, Elsevier, vol. 46(1), pages 405-419.
    9. Son H. Kim, Jae Edmonds, Josh Lurz, Steven J. Smith, and Marshall Wise, 2006. "The objECTS Framework for integrated Assessment: Hybrid Modeling of Transportation," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 63-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yulong Xie & Mark Halverson & Rosemarie Bartlett & Yan Chen & Michael Rosenberg & Todd Taylor & Jeremiah Williams & Michael Reiner, 2020. "Evaluating Building Energy Code Compliance and Savings Potential through Large-Scale Simulation with Models Inferred by Field Data," Energies, MDPI, vol. 13(9), pages 1-19, May.
    2. Seungho Jeon & Minyoung Roh & Jaeick Oh & Suduk Kim, 2020. "Development of an Integrated Assessment Model at Provincial Level: GCAM-Korea," Energies, MDPI, vol. 13(10), pages 1-15, May.
    3. Wang, Xia & Feng, Wei & Cai, Weiguang & Ren, Hong & Ding, Chao & Zhou, Nan, 2019. "Do residential building energy efficiency standards reduce energy consumption in China? – A data-driven method to validate the actual performance of building energy efficiency standards," Energy Policy, Elsevier, vol. 131(C), pages 82-98.
    4. Ji Li & Wei Xu & Ping Cui & Biao Qiao & Siyang Wu & Chenghua Zhao, 2019. "Research on a Systematical Design Method for Nearly Zero-Energy Buildings," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    5. Gonçalves, Juliana E. & van Hooff, Twan & Saelens, Dirk, 2021. "Simulating building integrated photovoltaic facades: Comparison to experimental data and evaluation of modelling complexity," Applied Energy, Elsevier, vol. 281(C).
    6. Thapar, Sapan, 2020. "Energy consumption behavior: A data-based analysis of urban Indian households," Energy Policy, Elsevier, vol. 143(C).
    7. Shaleen Singhal & Sapan Thapar & Meenakshi Kumar & Sourabh Jain, 2022. "Impacts of sustainable consumption and production initiatives in energy and waste management sectors: examples from India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14184-14209, December.
    8. Mediha Burcu Silaydin Aydin & Emine Duygu Kahraman, 2022. "Mitigation or adaptation, the determination of which strategy should be given priority for urban spatial development: the case study of central cities in Turkey," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-23, February.
    9. Jaykumar Joshi & Akhilesh Magal & Vijay S. Limaye & Prima Madan & Anjali Jaiswal & Dileep Mavalankar & Kim Knowlton, 2022. "Climate change and 2030 cooling demand in Ahmedabad, India: opportunities for expansion of renewable energy and cool roofs," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-17, October.
    10. Prince, & Hati, Ananda Shankar, 2021. "A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Karthick, A. & Kalidasa Murugavel, K. & Kalaivani, L., 2018. "Performance analysis of semitransparent photovoltaic module for skylights," Energy, Elsevier, vol. 162(C), pages 798-812.
    12. Rashiqa Abdul Salam & Khuram Pervez Amber & Naeem Iqbal Ratyal & Mehboob Alam & Naveed Akram & Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2020. "An Overview on Energy and Development of Energy Integration in Major South Asian Countries: The Building Sector," Energies, MDPI, vol. 13(21), pages 1-37, November.
    13. Minyoung Roh & Seungho Jeon & Soontae Kim & Sha Yu & Almas Heshmati & Suduk Kim, 2020. "Modeling Air Pollutant Emissions in the Provincial Level Road Transportation Sector in Korea: A Case Study of the Zero-Emission Vehicle Subsidy," Energies, MDPI, vol. 13(15), pages 1-22, August.
    14. Liu, Junxian & Nie, Song & Lin, Tiantian, 2024. "Government auditing and urban energy efficiency in the context of the digital economy: Evidence from China's Auditing System reform," Energy, Elsevier, vol. 296(C).
    15. Koengkan, Matheus & Fuinhas, José Alberto & Osmani, Fariba & Kazemzadeh, Emad & Auza, Anna & Alavijeh, Nooshin Karimi & Teixeira, Mônica, 2022. "Do financial and fiscal incentive policies increase the energy efficiency ratings in residential properties? A piece of empirical evidence from Portugal," Energy, Elsevier, vol. 241(C).
    16. Yu, Yanzhe & Cheng, Jie & You, Shijun & Ye, Tianzhen & Zhang, Huan & Fan, Man & Wei, Shen & Liu, Shan, 2019. "Effect of implementing building energy efficiency labeling in China: A case study in Shanghai," Energy Policy, Elsevier, vol. 133(C).
    17. Shaik, Saboor & Maduru, Venkata Ramana & Kontoleon, Karolos J. & Arıcı, Müslüm & Gorantla, Kirankumar & Afzal, Asif, 2022. "Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes," Energy, Elsevier, vol. 243(C).
    18. Jiang, Qibo & Tan, Qingmei, 2021. "National environmental audit and improvement of regional energy efficiency from the perspective of institution and development differences," Energy, Elsevier, vol. 217(C).
    19. Guanyi Yu & Qiang Lin & Xiaoqian Qi, 2021. "Government Incentive Contracts for Microgrid Users," Energies, MDPI, vol. 14(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    2. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    3. Pan, Xunzhang & Chen, Wenying & Zhou, Sheng & Wang, Lining & Dai, Jiaquan & Zhang, Qi & Zheng, Xinzhu & Wang, Hailin, 2020. "Implications of near-term mitigation on China's long-term energy transitions for aligning with the Paris goals," Energy Economics, Elsevier, vol. 90(C).
    4. Zhou, Yuyu & Clarke, Leon & Eom, Jiyong & Kyle, Page & Patel, Pralit & Kim, Son H. & Dirks, James & Jensen, Erik & Liu, Ying & Rice, Jennie & Schmidt, Laurel & Seiple, Timothy, 2014. "Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework," Applied Energy, Elsevier, vol. 113(C), pages 1077-1088.
    5. James McFarland & Yuyu Zhou & Leon Clarke & Patrick Sullivan & Jesse Colman & Wendy Jaglom & Michelle Colley & Pralit Patel & Jiyon Eom & Son Kim & G. Kyle & Peter Schultz & Boddu Venkatesh & Juanita , 2015. "Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison," Climatic Change, Springer, vol. 131(1), pages 111-125, July.
    6. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    7. Yu, Sha & Eom, Jiyong & Zhou, Yuyu & Evans, Meredydd & Clarke, Leon, 2014. "Scenarios of building energy demand for China with a detailed regional representation," Energy, Elsevier, vol. 67(C), pages 284-297.
    8. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    9. Zulfikar Yurnaidi & Suduk Kim, 2018. "Reducing Biomass Utilization in the Ethiopia Energy System: A National Modeling Analysis," Energies, MDPI, vol. 11(7), pages 1-17, July.
    10. Seungho Jeon & Minyoung Roh & Jaeick Oh & Suduk Kim, 2020. "Development of an Integrated Assessment Model at Provincial Level: GCAM-Korea," Energies, MDPI, vol. 13(10), pages 1-15, May.
    11. Francisco Ralston Fonseca & Paulina Jaramillo & Mario Bergés & Edson Severnini, 2019. "Seasonal effects of climate change on intra-day electricity demand patterns," Climatic Change, Springer, vol. 154(3), pages 435-451, June.
    12. Tang, Bao-Jun & Guo, Yang-Yang & Yu, Biying & Harvey, L.D. Danny, 2021. "Pathways for decarbonizing China’s building sector under global warming thresholds," Applied Energy, Elsevier, vol. 298(C).
    13. Leibowicz, Benjamin D. & Lanham, Christopher M. & Brozynski, Max T. & Vázquez-Canteli, José R. & Castejón, Nicolás Castillo & Nagy, Zoltan, 2018. "Optimal decarbonization pathways for urban residential building energy services," Applied Energy, Elsevier, vol. 230(C), pages 1311-1325.
    14. Yu, Sha & Eom, Jiyong & Evans, Meredydd & Clarke, Leon, 2014. "A long-term, integrated impact assessment of alternative building energy code scenarios in China," Energy Policy, Elsevier, vol. 67(C), pages 626-639.
    15. Huo, Tengfei & Ma, Yuling & Xu, Linbo & Feng, Wei & Cai, Weiguang, 2022. "Carbon emissions in China's urban residential building sector through 2060: A dynamic scenario simulation," Energy, Elsevier, vol. 254(PA).
    16. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    17. Rui Xing & Tatsuya Hanaoka & Yuko Kanamori & Hancheng Dai & Toshihiko Masui, 2015. "Energy Service Demand Projections and CO 2 Reduction Potentials in Rural Households in 31 Chinese Provinces," Sustainability, MDPI, vol. 7(12), pages 1-14, November.
    18. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "Adaptability research on phase change materials based technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 145-158.
    19. Wei Zhou & Alice Moncaster & David M Reiner & Peter Guthrie, 2019. "Estimating Lifetimes and Stock Turnover Dynamics of Urban Residential Buildings in China," Sustainability, MDPI, vol. 11(13), pages 1-18, July.
    20. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:110:y:2017:i:c:p:331-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.