IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i7d10.1007_s10668-023-03356-0.html
   My bibliography  Save this article

Novel evolutionary-optimized neural network for predicting landslide susceptibility

Author

Listed:
  • Rana Muhammad Adnan Ikram

    (Guangzhou University)

  • Imran Khan

    (University of Haripur)

  • Hossein Moayedi

    (Duy Tan University
    Duy Tan University)

  • Atefeh Ahmadi Dehrashid

    (University of Kurdistan
    University of Kurdistan)

  • Ismail Elkhrachy

    (Najran University)

  • Binh Nguyen Le

    (Duy Tan University
    Duy Tan University)

Abstract

In order to mitigate/prevent the risks of landslides, one of the essential tools that can be used to manage and plan the development of human settlements is landslide susceptibility. The two metaheuristic algorithms explored in this paper are the SCE and VSA algorithms used to optimize the artificial neural network (ANN) model. By integrating the two algorithms with the artificial neural network model, we try to determine its optimum computational parameters in order to generate the landslide susceptibility mapping for the Kurdistan province in Iran. Sixteen causative factors of landslides are included in the spatial database. The landslide susceptibility maps were generated in a GIS medium, and in order to evaluate the employed predictive models, the criterion of the area under the curve (AUC) was employed. This investigation includes 1072 landslide events, which are divided as follows: one-third as testing data and two-thirds as training data (i.e., a 75:25 ratio). The results indicate that after using the abovementioned algorithms, the AUC increased noticeably from 0.708 to 0.788 for SCE-MLP and from 0.744 to 0.818 for VSA-MLP in the training phase. The criterion of the area under the curve was utilized in order to evaluate the accuracy of the employed probabilistic models. Incidentally, the comparable AUCs calculated for the VSA-MLP testing databases and the obtained AUCs were 0.818, 0.801, 0.791, 0.786, 0.784, 0.778, 0.777, 0.776, 0.754 and 0.744, respectively for population size in training databases equal to 50, 350, 500, 150, 450, 200, 400, 300, 100 to and 250. Also, in case of SCE-MLP, the training and testing AUC were found (0.878, 0.865, 0.851, 0.850, 0.819, 0.816, 0.815, 0.781, 0.760, and 0.756) and (0.788, 0.782, 0.759, 0.744, 0.727, 0.720, 0.718, 0.713 and 0.708). The best fit for swarm size conditions of the SCE-MLP and VSA-MLP model showed 150 and 350, respectively. The acquired results indicate that the VSA-ANN model has a better predictive capability in optimization of the structure of the artificial neural network model and computational parameters in comparison with the SCE-ANN.

Suggested Citation

  • Rana Muhammad Adnan Ikram & Imran Khan & Hossein Moayedi & Atefeh Ahmadi Dehrashid & Ismail Elkhrachy & Binh Nguyen Le, 2024. "Novel evolutionary-optimized neural network for predicting landslide susceptibility," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17687-17719, July.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03356-0
    DOI: 10.1007/s10668-023-03356-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03356-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03356-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alireza Nilforoushan & Mashalah Khamehchiyan & Mohammad Reza Nikudel, 2021. "Investigation of the probable trigger factor for large landslides in north of Dehdasht, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1891-1921, January.
    2. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    3. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    4. H. Pourghasemi & H. Moradi & S. Fatemi Aghda, 2013. "Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 749-779, October.
    5. Tingyu Zhang & Quan Fu & Chao Li & Fangfang Liu & Huanyuan Wang & Ling Han & Renata Pacheco Quevedo & Tianqing Chen & Na Lei, 2022. "Modeling landslide susceptibility using data mining techniques of kernel logistic regression, fuzzy unordered rule induction algorithm, SysFor and random forest," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3327-3358, December.
    6. Hamed Safayenikoo & Mohammad Khajehzadeh & Moncef L. Nehdi, 2022. "Novel Evolutionary-Optimized Neural Network for Predicting Fresh Concrete Slump," Sustainability, MDPI, vol. 14(9), pages 1-15, April.
    7. Iuliana Armaş, 2012. "Weights of evidence method for landslide susceptibility mapping. Prahova Subcarpathians, Romania," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(3), pages 937-950, February.
    8. Fen Yang & Hossein Moayedi & Amir Mosavi, 2021. "Predicting the Degree of Dissolved Oxygen Using Three Types of Multi-Layer Perceptron-Based Artificial Neural Networks," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    9. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalid Almutairi & Salem Algarni & Talal Alqahtani & Hossein Moayedi & Amir Mosavi, 2022. "A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    2. Eseosa Halima Ighile & Hiroaki Shirakawa & Hiroki Tanikawa, 2022. "Application of GIS and Machine Learning to Predict Flood Areas in Nigeria," Sustainability, MDPI, vol. 14(9), pages 1-33, April.
    3. Chenhong Zhu & J. G. Wang & Na Xu & Wei Liang & Bowen Hu & Peibo Li, 2022. "A Combination Approach of the Numerical Simulation and Data-Driven Analysis for the Impacts of Refracturing Layout and Time on Shale Gas Production," Sustainability, MDPI, vol. 14(23), pages 1-30, December.
    4. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    5. Shairy Chaudhary & Atul Kumar & Malay Pramanik & Mahabir Singh Negi, 2022. "Land evaluation and sustainable development of ecotourism in the Garhwal Himalayan region using geospatial technology and analytical hierarchy process," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2225-2266, February.
    6. Garyfallos Arabatzis & Georgios Kolkos & Anastasia Stergiadou & Apostolos Kantartzis & Stergios Tampekis, 2024. "Optimal Allocation of Water Reservoirs for Sustainable Wildfire Prevention Planning via AHP-TOPSIS and Forest Road Network Analysis," Sustainability, MDPI, vol. 16(2), pages 1-27, January.
    7. Yigen Qin & Genlan Yang & Kunpeng Lu & Qianzheng Sun & Jin Xie & Yunwu Wu, 2021. "Performance Evaluation of Five GIS-Based Models for Landslide Susceptibility Prediction and Mapping: A Case Study of Kaiyang County, China," Sustainability, MDPI, vol. 13(11), pages 1-20, June.
    8. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    9. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    10. Fathy, Ahmed & Rezk, Hegazy & Alharbi, Abdullah G. & Yousri, Dalia, 2023. "Proton exchange membrane fuel cell model parameters identification using Chaotically based-bonobo optimizer," Energy, Elsevier, vol. 268(C).
    11. Yuan, Yongliang & Yang, Qingkang & Ren, Jianji & Mu, Xiaokai & Wang, Zhenxi & Shen, Qianlong & Zhao, Wu, 2024. "Attack-defense strategy assisted osprey optimization algorithm for PEMFC parameters identification," Renewable Energy, Elsevier, vol. 225(C).
    12. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    13. Mohamed Ahmed Ali & Mohey Eldin Mandour & Mohammed Elsayed Lotfy, 2023. "Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    14. Sandipa Bhattacharya & Mitali Sarkar & Biswajit Sarkar & Lakshmi Thangavelu, 2023. "Exploring Sustainability and Economic Growth through Generation of Renewable Energy with Respect to the Dynamical Environment," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    15. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    16. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    17. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    18. Kiyeon Kim & Joonyoung Kim & Tae-Young Kwak & Choong-Ki Chung, 2018. "Logistic regression model for sinkhole susceptibility due to damaged sewer pipes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(2), pages 765-785, September.
    19. Samira Rastbod & Farnaz Rahimi & Yara Dehghan & Saeed Kamranfar & Omrane Benjeddou & Moncef L. Nehdi, 2022. "An Optimized Machine Learning Approach for Forecasting Thermal Energy Demand of Buildings," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    20. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:7:d:10.1007_s10668-023-03356-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.