IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp1132-1149.html
   My bibliography  Save this article

Energy economy optimization and comprehensive performance improvement for PEMFC/LIB hybrid system based on hierarchical optimization

Author

Listed:
  • Lü, Xueqin
  • Meng, Ruidong
  • Deng, Ruiyu
  • Long, Liyuan
  • Wu, Yinbo

Abstract

In order to improve the motion range of mobile welding robot, energy management strategy of fuel cell hybrid power system were studied, which involves energy economy optimization and comprehensive performance improvement. The energy management strategy adopts hierarchical optimization control. Inner layer realizes power distribution and energy optimization, using the maximum power point tracking control (MPPT) based on hybrid algorithm and an improved equivalent consumption minimization strategy (ECMS) to optimize the output power distribution. MPPT allows fuel cell to output maximum power stably and maximize the fuel cell utilization. The improved ECMS optimizes the equivalence factor by fuzzy logic control to increase the calculation accuracy. This strategy improves the economy of system energy consumption. The outer layer uses state machine control to switch the control strategy according to the operating state of the system. When the SOC of the battery is lower than the set threshold, MPPT control is used. And when the SOC is higher than the set threshold, ECMS is used. Experimental results show that the rationality of PEMFC output power and battery charge-discharge has been improved, and the economy of hybrid power system has also been improved.

Suggested Citation

  • Lü, Xueqin & Meng, Ruidong & Deng, Ruiyu & Long, Liyuan & Wu, Yinbo, 2022. "Energy economy optimization and comprehensive performance improvement for PEMFC/LIB hybrid system based on hierarchical optimization," Renewable Energy, Elsevier, vol. 193(C), pages 1132-1149.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1132-1149
    DOI: 10.1016/j.renene.2022.05.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ya-Xiong & Ou, Kai & Kim, Young-Bae, 2017. "Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system," Renewable Energy, Elsevier, vol. 111(C), pages 381-391.
    2. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    3. Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
    4. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    5. Zhang, Shuo & Xiong, Rui & Cao, Jiayi, 2016. "Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system," Applied Energy, Elsevier, vol. 179(C), pages 316-328.
    6. Fathabadi, Hassan, 2019. "Combining a proton exchange membrane fuel cell (PEMFC) stack with a Li-ion battery to supply the power needs of a hybrid electric vehicle," Renewable Energy, Elsevier, vol. 130(C), pages 714-724.
    7. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
    8. Jafari, Mohammad & Malekjamshidi, Zahra, 2020. "Optimal energy management of a residential-based hybrid renewable energy system using rule-based real-time control and 2D dynamic programming optimization method," Renewable Energy, Elsevier, vol. 146(C), pages 254-266.
    9. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Wanchao & Han, Jitian & Ge, Yi & Yang, Jinwen & Liang, Wenxing, 2024. "Multi-criteria optimization of a combined power and freshwater system using modified NSGA-II and AHP-entropy-topsis," Renewable Energy, Elsevier, vol. 227(C).
    2. Büyük, Mehmet & İnci, Mustafa, 2023. "Improved drift-free P&O MPPT method to enhance energy harvesting capability for dynamic operating conditions of fuel cells," Energy, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueqin Lü, & Wu, Yinbo & Lian, Jie & Zhang, Yangyang, 2021. "Energy management and optimization of PEMFC/battery mobile robot based on hybrid rule strategy and AMPSO," Renewable Energy, Elsevier, vol. 171(C), pages 881-901.
    2. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    3. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    4. Iqbal, Mehroze & Becherif, Mohamed & Ramadan, Haitham S. & Badji, Abderrezak, 2021. "Dual-layer approach for systematic sizing and online energy management of fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 300(C).
    5. Wang, Yujie & Sun, Zhendong & Li, Xiyun & Yang, Xiaoyu & Chen, Zonghai, 2019. "A comparative study of power allocation strategies used in fuel cell and ultracapacitor hybrid systems," Energy, Elsevier, vol. 189(C).
    6. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    7. Arkadiusz Adamczyk, 2020. "Sizing and Control Algorithms of a Hybrid Energy Storage System Based on Fuel Cells," Energies, MDPI, vol. 13(19), pages 1-15, October.
    8. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    9. Xu, Xiao & Hu, Weihao & Cao, Di & Liu, Wen & Huang, Qi & Hu, Yanting & Chen, Zhe, 2021. "Enhanced design of an offgrid PV-battery-methanation hybrid energy system for power/gas supply," Renewable Energy, Elsevier, vol. 167(C), pages 440-456.
    10. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    11. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    12. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    13. Chen, Zheng & Hu, Hengjie & Wu, Yitao & Zhang, Yuanjian & Li, Guang & Liu, Yonggang, 2020. "Stochastic model predictive control for energy management of power-split plug-in hybrid electric vehicles based on reinforcement learning," Energy, Elsevier, vol. 211(C).
    14. Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
    15. Chen, Jianguo & Han, Xuebing & Sun, Tao & Zheng, Yuejiu, 2024. "Analysis and prediction of battery aging modes based on transfer learning," Applied Energy, Elsevier, vol. 356(C).
    16. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    17. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    18. Huang, Jiangfan & An, Qing & Zhou, Mingyu & Tang, Ruoli & Dong, Zhengcheng & Lai, Jingang & Li, Xin & Yang, Xiangguo, 2024. "A self-adaptive joint optimization framework for marine hybrid energy storage system design considering load fluctuation characteristics," Applied Energy, Elsevier, vol. 361(C).
    19. Talha, Muhammad & Raihan, S.R.S. & Rahim, N Abd, 2020. "PV inverter with decoupled active and reactive power control to mitigate grid faults," Renewable Energy, Elsevier, vol. 162(C), pages 877-892.
    20. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:1132-1149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.