IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1833-1845.html
   My bibliography  Save this article

A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell

Author

Listed:
  • Fathy, Ahmed
  • Elaziz, Mohamed Abd
  • Alharbi, Abdullah G.

Abstract

Fuel cells (FCs) penetrated strongly in many applications, modeling of FCs became a major challenge in recent years due to their characteristics, there are some missing data in the datasheet. This paper presents a novel hybrid optimization approach comprising vortex search algorithm (VSA) and differential evolution (DE) for estimating the optimal unspecified parameters of the proton exchange membrane fuel cell (PEMFC). The parameters to be evaluated are seven, ξ1, ξ2, ξ3, ξ4, λ, Rc and b to minimize sum squared deviation between the experimental and calculated polarization curves. The hybridization between VSA and DE is proposed to enhance the performance of VSA and prevent falling in local optima, DE is used as a local search method to promote the process of exploitation followed in VSA. The analysis is performed on different PEMFCs, 250 W stack, NedStack PS6, BCS 500-W, and SR-12 PEM 500 W, the obtained results are compared to those obtained via other approaches. In 250 W stack, four sets of actual voltage have been used, two of them are used for the optimization process while the others are employed to check the validity of the obtained model. The obtained results confirmed the superiority and reliability of the proposed approach.

Suggested Citation

  • Fathy, Ahmed & Elaziz, Mohamed Abd & Alharbi, Abdullah G., 2020. "A novel approach based on hybrid vortex search algorithm and differential evolution for identifying the optimal parameters of PEM fuel cell," Renewable Energy, Elsevier, vol. 146(C), pages 1833-1845.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1833-1845
    DOI: 10.1016/j.renene.2019.08.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    2. Salim, Reem & Nabag, Mahmoud & Noura, Hassan & Fardoun, Abbas, 2015. "The parameter identification of the Nexa 1.2 kW PEMFC's model using particle swarm optimization," Renewable Energy, Elsevier, vol. 82(C), pages 26-34.
    3. Gong, Wenyin & Yan, Xuesong & Liu, Xiaobo & Cai, Zhihua, 2015. "Parameter extraction of different fuel cell models with transferred adaptive differential evolution," Energy, Elsevier, vol. 86(C), pages 139-151.
    4. Xu, Liangfei & Fang, Chuan & Hu, Junming & Cheng, Siliang & Li, Jianqiu & Ouyang, Minggao & Lehnert, Werner, 2017. "Parameter extraction of polymer electrolyte membrane fuel cell based on quasi-dynamic model and periphery signals," Energy, Elsevier, vol. 122(C), pages 675-690.
    5. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    6. Al-Baghdadi, Maher A.R. Sadiq, 2005. "Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations," Renewable Energy, Elsevier, vol. 30(10), pages 1587-1599.
    7. El-Fergany, Attia A., 2018. "Extracting optimal parameters of PEM fuel cells using Salp Swarm Optimizer," Renewable Energy, Elsevier, vol. 119(C), pages 641-648.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Shuhui & Wang, Yong & Wang, Zhi, 2019. "Parameter estimation of proton exchange membrane fuel cells using eagle strategy based on JAYA algorithm and Nelder-Mead simplex method," Energy, Elsevier, vol. 173(C), pages 457-467.
    2. Gouda, Eid A. & Kotb, Mohamed F. & El-Fergany, Attia A., 2021. "Jellyfish search algorithm for extracting unknown parameters of PEM fuel cell models: Steady-state performance and analysis," Energy, Elsevier, vol. 221(C).
    3. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    4. Mohamed Louzazni & Sameer Al-Dahidi & Marco Mussetta, 2020. "Fuel Cell Characteristic Curve Approximation Using the Bézier Curve Technique," Sustainability, MDPI, vol. 12(19), pages 1-23, October.
    5. Ahmed M. Agwa & Attia A. El-Fergany & Gamal M. Sarhan, 2019. "Steady-State Modeling of Fuel Cells Based on Atom Search Optimizer," Energies, MDPI, vol. 12(10), pages 1-14, May.
    6. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    7. Yang, Bo & Liang, Boxiao & Qian, Yucun & Zheng, Ruyi & Su, Shi & Guo, Zhengxun & Jiang, Lin, 2024. "Parameter identification of PEMFC via feedforward neural network-pelican optimization algorithm," Applied Energy, Elsevier, vol. 361(C).
    8. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    9. Kandidayeni, M. & Macias, A. & Khalatbarisoltani, A. & Boulon, L. & Kelouwani, S., 2019. "Benchmark of proton exchange membrane fuel cell parameters extraction with metaheuristic optimization algorithms," Energy, Elsevier, vol. 183(C), pages 912-925.
    10. Fathy, Ahmed & Rezk, Hegazy, 2018. "Multi-verse optimizer for identifying the optimal parameters of PEMFC model," Energy, Elsevier, vol. 143(C), pages 634-644.
    11. Samuel Raafat Fahim & Hany M. Hasanien & Rania A. Turky & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Abdullah M. Noman & Marcos Tostado-Véliz & Francisco Jurado, 2021. "Parameter Identification of Proton Exchange Membrane Fuel Cell Based on Hunger Games Search Algorithm," Energies, MDPI, vol. 14(16), pages 1-21, August.
    12. Priya, K. & Sathishkumar, K. & Rajasekar, N., 2018. "A comprehensive review on parameter estimation techniques for Proton Exchange Membrane fuel cell modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 121-144.
    13. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Mohammad Ali Abdelkareem & Enas Taha Sayed, 2023. "Fuzzy Modelling and Optimization to Decide Optimal Parameters of the PEMFC," Energies, MDPI, vol. 16(12), pages 1-16, June.
    14. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    15. Banaja Mohanty & Rajvikram Madurai Elavarasan & Hany M. Hasanien & Elangovan Devaraj & Rania A. Turky & Rishi Pugazhendhi, 2022. "Parameters Identification of Proton Exchange Membrane Fuel Cell Model Based on the Lightning Search Algorithm," Energies, MDPI, vol. 15(21), pages 1-19, October.
    16. Mohamed Ahmed Ali & Mohey Eldin Mandour & Mohammed Elsayed Lotfy, 2023. "Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    17. Ibrahim Alsaidan & Mohamed A. M. Shaheen & Hany M. Hasanien & Muhannad Alaraj & Abrar S. Alnafisah, 2021. "Proton Exchange Membrane Fuel Cells Modeling Using Chaos Game Optimization Technique," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    19. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    20. Rezk, Hegazy & Olabi, A.G. & Ferahtia, Seydali & Sayed, Enas Taha, 2022. "Accurate parameter estimation methodology applied to model proton exchange membrane fuel cell," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1833-1845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.