IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9086-d989368.html
   My bibliography  Save this article

Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System

Author

Listed:
  • Marco Pierro

    (Institute for Renewable Energy, EURAC Research, Viale Druso, 1, 39100 Bolzano, Italy)

  • Fabio Romano Liolli

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Damiano Gentili

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Marcello Petitta

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

  • Richard Perez

    (Atmospheric Sciences Research Center, State University of New York, Albany, NY 12246, USA)

  • David Moser

    (Institute for Renewable Energy, EURAC Research, Viale Druso, 1, 39100 Bolzano, Italy)

  • Cristina Cornaro

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
    Center for Hybrid and Organic Solar Energy-CHOSE, University of Rome Tor Vergata, 00133 Rome, Italy)

Abstract

The high share of PV energy requires greater system flexibility to address the increased demand/supply imbalance induced by the inherent intermittency and variability of the solar resource. In this work, we have developed a methodology to evaluate the margins for imbalance reduction and flexibility that can be achieved by advanced solar/wind forecasting and by strengthening the national transmission grid connecting the Italian market areas. To this end, for the forecasting of the day-ahead supply that should be provided by dispatchable generators, we developed three advanced load/PV/wind forecasting methodologies based on a chain or on the optimal mix of different forecasting techniques. We showed that, compared to the baseline forecast, there is a large margin for the imbalance/flexibility reduction: 60.3% for the imbalance and 47.5% for the flexibility requirement. In contrast, the TSO forecast leaves only a small margin to reduce the imbalance of the system through more accurate forecasts, while a larger reduction can be achieved by removing the grid constrains between market zones. Furthermore, we have applied the new forecasting methodologies to estimate the amount of imbalance volumes/costs/flexibility/overgenerations that could be achieved in the future according to the Italian RES generation targets, highlighting some critical issues related to high variable renewable energy share.

Suggested Citation

  • Marco Pierro & Fabio Romano Liolli & Damiano Gentili & Marcello Petitta & Richard Perez & David Moser & Cristina Cornaro, 2022. "Impact of PV/Wind Forecast Accuracy and National Transmission Grid Reinforcement on the Italian Electric System," Energies, MDPI, vol. 15(23), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9086-:d:989368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9086/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9086/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Marco Pierro & David Moser & Richard Perez & Cristina Cornaro, 2020. "The Value of PV Power Forecast and the Paradox of the “Single Pricing” Scheme: The Italian Case Study," Energies, MDPI, vol. 13(15), pages 1-27, August.
    3. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    4. Shaker, Hamid & Manfre, Daniel & Zareipour, Hamidreza, 2020. "Forecasting the aggregated output of a large fleet of small behind-the-meter solar photovoltaic sites," Renewable Energy, Elsevier, vol. 147(P1), pages 1861-1869.
    5. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2020. "Italian protocol for massive solar integration: Imbalance mitigation strategies," Renewable Energy, Elsevier, vol. 153(C), pages 725-739.
    7. De Felice, Matteo & Petitta, Marcello & Ruti, Paolo M., 2015. "Short-term predictability of photovoltaic production over Italy," Renewable Energy, Elsevier, vol. 80(C), pages 197-204.
    8. Pierro, Marco & De Felice, Matteo & Maggioni, Enrico & Moser, David & Perotto, Alessandro & Spada, Francesco & Cornaro, Cristina, 2020. "Residual load probabilistic forecast for reserve assessment: A real case study," Renewable Energy, Elsevier, vol. 149(C), pages 508-522.
    9. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "Curtailment in a Highly Renewable Power System and Its Effect on Capacity Factors," Energies, MDPI, vol. 9(7), pages 1-18, June.
    10. Yingpei Liu & Yan Li & Haiping Liang & Jia He & Hanyang Cui, 2019. "Energy Routing Control Strategy for Integrated Microgrids Including Photovoltaic, Battery-Energy Storage and Electric Vehicles," Energies, MDPI, vol. 12(2), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pierro, Marco & Perez, Richard & Perez, Marc & Moser, David & Cornaro, Cristina, 2021. "Imbalance mitigation strategy via flexible PV ancillary services: The Italian case study," Renewable Energy, Elsevier, vol. 179(C), pages 1694-1705.
    2. Pierro, Marco & Gentili, Damiano & Liolli, Fabio Romano & Cornaro, Cristina & Moser, David & Betti, Alessandro & Moschella, Michela & Collino, Elena & Ronzio, Dario & van der Meer, Dennis, 2022. "Progress in regional PV power forecasting: A sensitivity analysis on the Italian case study," Renewable Energy, Elsevier, vol. 189(C), pages 983-996.
    3. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    4. Pierro, Marco & Perez, Richard & Perez, Marc & Prina, Matteo Giacomo & Moser, David & Cornaro, Cristina, 2021. "Italian protocol for massive solar integration: From solar imbalance regulation to firm 24/365 solar generation," Renewable Energy, Elsevier, vol. 169(C), pages 425-436.
    5. Alexander Kies & Bruno U. Schyska & Lueder Von Bremen, 2016. "The Demand Side Management Potential to Balance a Highly Renewable European Power System," Energies, MDPI, vol. 9(11), pages 1-14, November.
    6. Marco Pierro & David Moser & Richard Perez & Cristina Cornaro, 2020. "The Value of PV Power Forecast and the Paradox of the “Single Pricing” Scheme: The Italian Case Study," Energies, MDPI, vol. 13(15), pages 1-27, August.
    7. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    8. Miguel López Santos & Xela García-Santiago & Fernando Echevarría Camarero & Gonzalo Blázquez Gil & Pablo Carrasco Ortega, 2022. "Application of Temporal Fusion Transformer for Day-Ahead PV Power Forecasting," Energies, MDPI, vol. 15(14), pages 1-22, July.
    9. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    12. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    13. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    14. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    15. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    16. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    17. Christina Carty & Oscar Claveria, 2022. "“The nexus between variable renewable energy, economy and climate: Evidence from European countries by means of exploratory graphical analysis”," AQR Working Papers 202205, University of Barcelona, Regional Quantitative Analysis Group, revised May 2022.
    18. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    19. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    20. Hayes, Liam & Stocks, Matthew & Blakers, Andrew, 2021. "Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9086-:d:989368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.