IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i11d10.1007_s10668-023-03766-0.html
   My bibliography  Save this article

Midterm change in rainfall distribution in north and central Benin: implications for agricultural decision making

Author

Listed:
  • Moudjahid Akorédé Wabi

    (Ghent University
    Université d’Abomey-Calavi)

  • Wouter Vanhove

    (Ghent University)

  • Rodrigue Idohou

    (Université d’Abomey-Calavi
    Université Nationale d’Agriculture)

  • Achille Hounkpèvi

    (Université d’Abomey-Calavi)

  • Romain Lucas Glèlè Kakaï

    (Université d’Abomey-Calavi)

  • Patrick Damme

    (Ghent University
    Czech University of Life Sciences, Prague)

Abstract

A better understanding of rainfall variability and trends is vital for agricultural production systems which are largely dependent on climate. This study aims to analyze and to quantify the significance of change on annual, seasonal and daily rainfall in North and Central Benin, and to infer future challenges for crop production. Daily rainfall data for the 1970–2016 period measured at three weather stations (Savè, Malanville and Tanguiéta) were obtained from the Benin National Weather Agency. Descriptive statistics, standardized anomaly of rainfall (SAR) and rainfall intensity were used to analyze rainfall variability. For rainfall trends analysis, we tested for auto-correlation and used the Mann–Kendall and modified Mann–Kendall tests for non-auto-correlated and auto-correlated data, respectively. Trend magnitude was estimated using Sen’s slope. Globally, a moderate-to-high seasonal rainfall and low variability of yearly rainfall were observed. The SAR indicated more than 50% of the years in the studies period experienced dry years. Between 1970 and 2016, a significant 20% increase was observed in the yearly rainfall in Tanguiéta, whereas no significant trends were observed in Malanville (10% increase) and Savè (0.6% decrease). The general rainfall increase observed during the post-monsoon season (October–November) in the three weather stations potentially increases flood frequencies during the harvest period of some crops, which can reduce crop yields. Adaptation strategies are needed which can mitigate the effects of climate change on agriculture. These findings are essential to the climate risk management in agriculture and to target appropriate adaptive measures for resilience building in the sector.

Suggested Citation

  • Moudjahid Akorédé Wabi & Wouter Vanhove & Rodrigue Idohou & Achille Hounkpèvi & Romain Lucas Glèlè Kakaï & Patrick Damme, 2024. "Midterm change in rainfall distribution in north and central Benin: implications for agricultural decision making," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 27431-27456, November.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03766-0
    DOI: 10.1007/s10668-023-03766-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03766-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03766-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yves Yao Soglo & Gbêtondji Melaine Armel Nonvide, 2019. "Climate change perceptions and responsive strategies in Benin: the case of maize farmers," Climatic Change, Springer, vol. 155(2), pages 245-256, July.
    2. Charles Onyutha, 2018. "African crop production trends are insufficient to guarantee food security in the sub-Saharan region by 2050 owing to persistent poverty," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1203-1219, October.
    3. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Abdoul G. Sam & Babatunde O. Abidoye & Sihle Mashaba, 2021. "Climate change and household welfare in sub-Saharan Africa: empirical evidence from Swaziland," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(2), pages 439-455, April.
    3. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    4. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    5. Gbêtondji Melaine Armel Nonvide, 2021. "Adoption of agricultural technologies among rice farmers in Benin," Review of Development Economics, Wiley Blackwell, vol. 25(4), pages 2372-2390, November.
    6. Nnodu Ifeanyi Daniel & Magaji Joshua Ibrahim, 2024. "Spatiotemporal Variations of Rainfall Over Nigeria from 1971 to 2020," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(7), pages 1374-1390, July.
    7. Gokhan Yildirim & Ataur Rahman, 2022. "Homogeneity and trend analysis of rainfall and droughts over Southeast Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1657-1683, June.
    8. Mohammed Achite & Tommaso Caloiero & Abderrezak Kamel Toubal, 2022. "Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method," Sustainability, MDPI, vol. 14(16), pages 1-23, August.
    9. Hüseyin Yavuz & Saffet Erdoğan, 2012. "Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 609-621, February.
    10. Helmi Saidi & Marzia Ciampittiello & Claudia Dresti & Giorgio Ghiglieri, 2015. "Assessment of Trends in Extreme Precipitation Events: A Case Study in Piedmont (North-West Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(1), pages 63-80, January.
    11. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    12. Wan-Jiun Chen, 2017. "Is the Green Solow Model Valid for $$\hbox {CO}_{2}$$ CO 2 Emissions in the European Union?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 23-45, May.
    13. Mayrene Guimarais & Adán Zúñiga-Ríos & Cesia J. Cruz-Ramírez & Valeria Chávez & Itxaso Odériz & Brigitta I. van Tussenbroek & Rodolfo Silva, 2021. "The Conservational State of Coastal Ecosystems on the Mexican Caribbean Coast: Environmental Guidelines for Their Management," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    14. Armel Nonvide, Gbêtondji Melaine, 2023. "Impact of information and communication technologies on agricultural households’ welfare in Benin," Telecommunications Policy, Elsevier, vol. 47(6).
    15. Azher Ibrahim Al-Taei & Ali Asghar Alesheikh & Ali Darvishi Boloorani, 2023. "Land Use/Land Cover Change Analysis Using Multi-Temporal Remote Sensing Data: A Case Study of Tigris and Euphrates Rivers Basin," Land, MDPI, vol. 12(5), pages 1-14, May.
    16. Roquia Salam & Abu Reza Md. Towfiqul Islam & Shakibul Islam, 2020. "Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4509-4535, June.
    17. Sinan Nacar, 2023. "Trends of High and Low Values of Annual and Seasonal Precipitation in Turkey," Sustainability, MDPI, vol. 15(23), pages 1-18, December.
    18. Kenneth W. Sibiko & Matin Qaim, 2020. "Weather index insurance, agricultural input use, and crop productivity in Kenya," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(1), pages 151-167, February.
    19. Mulwa, Chalmers K. & Visser, Martine, 2020. "Farm diversification as an adaptation strategy to climatic shocks and implications for food security in northern Namibia," World Development, Elsevier, vol. 129(C).
    20. J. Malherbe & B. Dieppois & P. Maluleke & M. Staden & D. Pillay, 2016. "South African droughts and decadal variability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 657-681, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:11:d:10.1007_s10668-023-03766-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.