IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i12d10.1007_s10584-024-03825-z.html
   My bibliography  Save this article

A framework to assess climate change effects on surface air temperature and soil moisture and application to Southwestern France

Author

Listed:
  • Marine Lanet

    (Sorbonne Université, ENS, Université PSL, École polytechnique, Institut Polytechnique de Paris, CNRS)

  • Laurent Li

    (Sorbonne Université, ENS, Université PSL, École polytechnique, Institut Polytechnique de Paris, CNRS)

  • Hervé Le Treut

    (Institut Pierre-Simon Laplace, Sorbonne Université)

Abstract

A comprehensive framework for climate change assessment is a prerequisite for managing multiple risks related to climate extremes, such as droughts, floods, or compound extreme events. It is also useful for addressing the diverging interests of stakeholders in finding regional adaptation solutions. Here, we design such a framework and a general methodology to assess the evolution of regional climate. Both mean values and extreme event characteristics of surface air temperature and soil moisture are analysed, including the likelihood of compound hot-dry, hot-wet, cold-dry, and cold-wet extreme conditions. These analyses are conducted for each month to investigate a variety of climate change impacts. The methodology is designed to be generic and easily applicable to any region of the world. It provides a foundational basis for initiating dialogue with local decision-makers, which will subsequently allow for further refinement of climatic impact-driver indices and analyses to produce tailored climate services. This work reports an application to Southwestern France, a region vulnerable to both floods and droughts with severe impacts on natural ecosystems and human societies. Drying and warming are expected throughout the year, with more pronounced effects in summer. This study highlights the complexity of designing adaptation solutions and the need for in-depth and comprehensive analyses of the evolution of local climate conditions. Specifically, Southwestern France is expected to experience an increase in drought frequency and intensity, while the region might still have to cope with the opposite phenomenon, floods.

Suggested Citation

  • Marine Lanet & Laurent Li & Hervé Le Treut, 2024. "A framework to assess climate change effects on surface air temperature and soil moisture and application to Southwestern France," Climatic Change, Springer, vol. 177(12), pages 1-17, December.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:12:d:10.1007_s10584-024-03825-z
    DOI: 10.1007/s10584-024-03825-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-024-03825-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-024-03825-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(6), pages 469-477, June.
    2. Jakob Zscheischler & Seth Westra & Bart J. J. M. Hurk & Sonia I. Seneviratne & Philip J. Ward & Andy Pitman & Amir AghaKouchak & David N. Bresch & Michael Leonard & Thomas Wahl & Xuebin Zhang, 2018. "Author Correction: Future climate risk from compound events," Nature Climate Change, Nature, vol. 8(8), pages 750-750, August.
    3. L. Rowland & A. C. L. da Costa & D. R. Galbraith & R. S. Oliveira & O. J. Binks & A. A. R. Oliveira & A. M. Pullen & C. E. Doughty & D. B. Metcalfe & S. S. Vasconcelos & L. V. Ferreira & Y. Malhi & J., 2015. "Death from drought in tropical forests is triggered by hydraulics not carbon starvation," Nature, Nature, vol. 528(7580), pages 119-122, December.
    4. Emmanuel Kasongo Yakusu & Joris Van Acker & Hans Van de Vyver & Nils Bourland & José Mbifo Ndiapo & Théophile Besango Likwela & Michel Lokonda Wa Kipifo & Amand Mbuya Kankolongo & Jan Van den Bulcke &, 2023. "Ground-based climate data show evidence of warming and intensification of the seasonal rainfall cycle during the 1960–2020 period in Yangambi, central Congo Basin," Climatic Change, Springer, vol. 176(10), pages 1-28, October.
    5. Camille Parmesan & Gary Yohe, 2003. "A globally coherent fingerprint of climate change impacts across natural systems," Nature, Nature, vol. 421(6918), pages 37-42, January.
    6. W. Matt Jolly & Mark A. Cochrane & Patrick H. Freeborn & Zachary A. Holden & Timothy J. Brown & Grant J. Williamson & David M. J. S. Bowman, 2015. "Climate-induced variations in global wildfire danger from 1979 to 2013," Nature Communications, Nature, vol. 6(1), pages 1-11, November.
    7. Stefan Gössling & Christoph Neger & Robert Steiger & Rainer Bell, 2023. "Weather, climate change, and transport: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1341-1360, September.
    8. Michelle T. H. van Vliet & John R. Yearsley & Fulco Ludwig & Stefan Vögele & Dennis P. Lettenmaier & Pavel Kabat, 2012. "Vulnerability of US and European electricity supply to climate change," Nature Climate Change, Nature, vol. 2(9), pages 676-681, September.
    9. Sebastian Sippel & Nicolai Meinshausen & Erich M. Fischer & Enikő Székely & Reto Knutti, 2020. "Climate change now detectable from any single day of weather at global scale," Nature Climate Change, Nature, vol. 10(1), pages 35-41, January.
    10. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    11. Yang Yang & Thian Yew Gan & Xuezhi Tan, 2021. "Recent changing characteristics of dry and wet spells in Canada," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    12. G. M. Filippelli & J. L. Freeman & J. Gibson & S. Jay & M. J. Moreno-Madriñán & I. Ogashawara & F. S. Rosenthal & Y. Wang & E. Wells, 2020. "Climate change impacts on human health at an actionable scale: a state-level assessment of Indiana, USA," Climatic Change, Springer, vol. 163(4), pages 1985-2004, December.
    13. Chris D. Hewitt & Roger C. Stone & Andrew B. Tait, 2017. "Improving the use of climate information in decision-making," Nature Climate Change, Nature, vol. 7(9), pages 614-616, September.
    14. Paolo Agnolucci & Vincenzo De Lipsis, 2020. "Long-run trend in agricultural yield and climatic factors in Europe," Climatic Change, Springer, vol. 159(3), pages 385-405, April.
    15. Raúl Sánchez-Salguero & Rafael Navarro-Cerrillo & J. Camarero & Ángel Fernández-Cancio, 2012. "Selective drought-induced decline of pine species in southeastern Spain," Climatic Change, Springer, vol. 113(3), pages 767-785, August.
    16. L. Samaniego & S. Thober & R. Kumar & N. Wanders & O. Rakovec & M. Pan & M. Zink & J. Sheffield & E. F. Wood & A. Marx, 2018. "Anthropogenic warming exacerbates European soil moisture droughts," Nature Climate Change, Nature, vol. 8(5), pages 421-426, May.
    17. William R. L. Anderegg & Jeffrey M. Kane & Leander D. L. Anderegg, 2013. "Consequences of widespread tree mortality triggered by drought and temperature stress," Nature Climate Change, Nature, vol. 3(1), pages 30-36, January.
    18. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    19. Terry L. Root & Jeff T. Price & Kimberly R. Hall & Stephen H. Schneider & Cynthia Rosenzweig & J. Alan Pounds, 2003. "Fingerprints of global warming on wild animals and plants," Nature, Nature, vol. 421(6918), pages 57-60, January.
    20. A. J. Challinor & J. Watson & D. B. Lobell & S. M. Howden & D. R. Smith & N. Chhetri, 2014. "A meta-analysis of crop yield under climate change and adaptation," Nature Climate Change, Nature, vol. 4(4), pages 287-291, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flach, Rafaela & Abrahão, Gabriel & Bryant, Benjamin & Scarabello, Marluce & Soterroni, Aline C. & Ramos, Fernando M. & Valin, Hugo & Obersteiner, Michael & Cohn, Avery S., 2021. "Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming," World Development, Elsevier, vol. 146(C).
    2. Richard Tol, 2011. "Regulating knowledge monopolies: the case of the IPCC," Climatic Change, Springer, vol. 108(4), pages 827-839, October.
    3. Weiqing Han & Lei Zhang & Gerald A. Meehl & Shoichiro Kido & Tomoki Tozuka & Yuanlong Li & Michael J. McPhaden & Aixue Hu & Anny Cazenave & Nan Rosenbloom & Gary Strand & B. Jason West & Wen Xing, 2022. "Sea level extremes and compounding marine heatwaves in coastal Indonesia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    4. Fabina, Nicholas S. & Abbott, Karen C. & Gilman, R.Tucker, 2010. "Sensitivity of plant–pollinator–herbivore communities to changes in phenology," Ecological Modelling, Elsevier, vol. 221(3), pages 453-458.
    5. J. J. Wijetunge & N. G. P. B. Neluwala, 2023. "Compound flood hazard assessment and analysis due to tropical cyclone-induced storm surges, waves and precipitation: a case study for coastal lowlands of Kelani river basin in Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3979-4007, April.
    6. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    7. Annie Paradis & Joe Elkinton & Katharine Hayhoe & John Buonaccorsi, 2008. "Role of winter temperature and climate change on the survival and future range expansion of the hemlock woolly adelgid (Adelges tsugae) in eastern North America," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 541-554, June.
    8. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Veruska Muccione & Thomas Lontzek & Christian Huggel & Philipp Ott & Nadine Salzmann, 2023. "An application of dynamic programming to local adaptation decision-making," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 523-544, October.
    10. Lucio, D. & Lara, J.L. & Tomás, A. & Losada, I.J., 2024. "Probabilistic assessment of climate-related impacts and risks in ports," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    11. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    12. Yingjie Niu & Zhentao Zou, 2024. "Robust Abatement Policy with Uncertainty About Environmental Disasters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(4), pages 933-965, April.
    13. Singer, Alexander & Johst, Karin & Banitz, Thomas & Fowler, Mike S. & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Hartig, Florian & Krug, Rainer M. & Liess, Matthias & Matlack, Glenn & Meyer, Katrin M, 2016. "Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?," Ecological Modelling, Elsevier, vol. 326(C), pages 63-74.
    14. Disha Sachan & Pankaj Kumar & Md. Saquib Saharwardi, 2022. "Contemporary climate change velocity for near-surface temperatures over India," Climatic Change, Springer, vol. 173(3), pages 1-19, August.
    15. Sitong Yang & Shouwei Li & Xue Rui & Tianxiang Zhao, 2024. "The impact of climate risk on the asset side and liability side of the insurance industry: evidence from China," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-51, June.
    16. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Zhang, Yu & Hao, Zengchao & Feng, Sifang & Zhang, Xuan & Hao, Fanghua, 2022. "Changes and driving factors of compound agricultural droughts and hot events in eastern China," Agricultural Water Management, Elsevier, vol. 263(C).
    18. Lusheng Li & Lili Zhao & Yanbin Li, 2023. "Spatiotemporal Characteristics of Meteorological and Agricultural Droughts in China: Change Patterns and Causes," Agriculture, MDPI, vol. 13(2), pages 1-16, January.
    19. Fekete, Alexander & Fuchs, Sven & Garschagen, Matthias & Hutter, Gérard & Klepp, Silja & Lüder, Catharina & Neise, Thomas & Sett, Dominic & von Elverfeldt, Kirsten & Wannewitz, Mia, 2022. "Adjustment or transformation? Disaster risk intervention examples from Austria, Indonesia, Kiribati and South Africa," Land Use Policy, Elsevier, vol. 120(C).
    20. Ferenc L. Toth & Eva Hizsnyik, 2005. "Managing The Inconceivable: Participatory Assessments Of Impacts And Responses To Extreme Climate Change," Working Papers FNU-74, Research unit Sustainability and Global Change, Hamburg University, revised May 2005.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:12:d:10.1007_s10584-024-03825-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.