IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i22p9533-d445871.html
   My bibliography  Save this article

Trend and Linearity Analysis of Meteorological Parameters in Peninsular Malaysia

Author

Listed:
  • Farahani Mohd Saimi

    (Faculty of Engineering and Build Environment, National University of Malaysia, Bangi 43600, Malaysia)

  • Firdaus Mohamad Hamzah

    (Faculty of Engineering and Build Environment, National University of Malaysia, Bangi 43600, Malaysia)

  • Mohd Ekhwan Toriman

    (Faculty of Social Sciences and Humanities, National University of Malaysia, Bangi 43600, Malaysia)

  • Othman Jaafar

    (Faculty of Engineering and Build Environment, National University of Malaysia, Bangi 43600, Malaysia)

  • Hazrina Tajudin

    (Faculty of Engineering and Build Environment, National University of Malaysia, Bangi 43600, Malaysia)

Abstract

Climate change has often led to severe impact on the environment. This study aimed to investigate the monthly trends and linearity of meteorological parameters at four locations during the period from 1970 to 2016. These locations represent the south, north, east, and west of Peninsular Malaysia. The meteorological parameters used were monthly total precipitation (mm) and monthly average temperature (°C). To illustrate the methodology, the Mann–Kendall (MK) trend test and a non-parametric regression model were used. The MK trend test did not indicate significant trends in precipitation, but indicated a trend in temperature for all locations. The Sen value gives the amount of fluctuation of precipitation and temperature for every year. The results of the linearity test exhibited a linear trend for precipitation and temperature for most of the months throughout the study period. Thus, this study gives insights into the monthly trends of meteorological parameters, especially in Peninsular Malaysia.

Suggested Citation

  • Farahani Mohd Saimi & Firdaus Mohamad Hamzah & Mohd Ekhwan Toriman & Othman Jaafar & Hazrina Tajudin, 2020. "Trend and Linearity Analysis of Meteorological Parameters in Peninsular Malaysia," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9533-:d:445871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/22/9533/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/22/9533/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janina Mozejko, 2012. "Detecting and Estimating Trends of Water Quality Parameters," Chapters, in: Konstantinos (Kostas) Voudouris & Dimitra Voutsa (ed.), Water Quality Monitoring and Assessment, IntechOpen.
    2. Sheng Yue & ChunYuan Wang, 2004. "The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 18(3), pages 201-218, June.
    3. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miao Fang & Xin Li & Hans W. Chen & Deliang Chen, 2022. "Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Mansoor Ahmed & Ghulam Hussain Dars & Suhail Ahmed & Nir Y. Krakauer, 2023. "Analyzing drought trends over Sindh Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 643-661, October.
    3. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    4. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.
    5. Bethany Everett & David Rehkopf & Richard Rogers, 2013. "The Nonlinear Relationship Between Education and Mortality: An Examination of Cohort, Race/Ethnic, and Gender Differences," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 893-917, December.
    6. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    7. Tsimpanos, Apostolos & Tsimbos, Cleon & Kalogirou, Stamatis, 2018. "Assessing spatial variation and heterogeneity of fertility in Greece at local authority level," MPRA Paper 100406, University Library of Munich, Germany.
    8. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    9. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    10. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    11. Nnodu Ifeanyi Daniel & Magaji Joshua Ibrahim, 2024. "Spatiotemporal Variations of Rainfall Over Nigeria from 1971 to 2020," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(7), pages 1374-1390, July.
    12. Vincenzo Loia & Stefania Tomasiello & Alfredo Vaccaro & Jinwu Gao, 2020. "Using local learning with fuzzy transform: application to short term forecasting problems," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 13-32, March.
    13. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    14. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    15. Thomas M. Fullerton & Arturo Bujanda, 2018. "Commercial property values in a border metropolitan economy," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 337-360, August.
    16. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.
    17. Henderson, Daniel J. & Polachek, Solomon W. & Wang, Le, 2011. "Heterogeneity in schooling rates of return," Economics of Education Review, Elsevier, vol. 30(6), pages 1202-1214.
    18. Hüseyin Yavuz & Saffet Erdoğan, 2012. "Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(3), pages 609-621, February.
    19. Cai Zongwu & Chen Linna & Fang Ying, 2012. "A New Forecasting Model for USD/CNY Exchange Rate," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-20, September.
    20. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:22:p:9533-:d:445871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.