IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v20y2018i4d10.1007_s10668-017-9953-5.html
   My bibliography  Save this article

Analyzing temporal–spatial characteristics of drought events in the northern part of Cyprus

Author

Listed:
  • Ahmad Haseeb Payab

    (Eastern Mediterranean University)

  • Umut Türker

    (Eastern Mediterranean University)

Abstract

Drought in the northern part of Cyprus has become a recurrent phenomenon. In the last few decades, Cyprus has experienced significantly severe drought events occurring periodically, and this trend is now continuing. With rainfall distribution varying considerably across the region and frequent drought conditions, the water resources, agriculture, economy and the environment have been adversely affected. This study aims to investigate spatial–temporal characteristic of drought using Standardized Precipitation Index (SPI) at multiple timescales (3, 6 and 12 months). Monthly time series of 36 years (1977–2013) rainfall data from nine weather stations are used to derive SPI values. Based on different drought categories, this study focuses on propagation of drought from one timescale to another and estimating critical rainfall values during moderate, severe and extreme drought conditions. The analysis revealed that there is a strong correlation among different timescales in detecting drought events. On average, 79 and 78% of 3-month timescale drought propagated into 6- and 12-month drought events, respectively, while 90% of 6-month timescale drought events propagated into 12-month drought events. The derived critical rainfall value for extreme droughts over a 12-month timescale was less than 255 mm/year in the town of Alsancak, while for Guzelyurt, a major citrus growing city, this figure was less than 135 mm/year. The results are validated through drought events detected at various regions of the Mediterranean basin and local flood occurrences during the wet periods and decline in water tables at drought seasons.

Suggested Citation

  • Ahmad Haseeb Payab & Umut Türker, 2018. "Analyzing temporal–spatial characteristics of drought events in the northern part of Cyprus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1553-1574, August.
  • Handle: RePEc:spr:endesu:v:20:y:2018:i:4:d:10.1007_s10668-017-9953-5
    DOI: 10.1007/s10668-017-9953-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-017-9953-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-017-9953-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. Bonaccorso & I. Bordi & A. Cancelliere & G. Rossi & A. Sutera, 2003. "Spatial Variability of Drought: An Analysis of the SPI in Sicily," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(4), pages 273-296, August.
    2. Gabriele Buttafuoco & Tommaso Caloiero, 2014. "Drought events at different timescales in southern Italy (Calabria)," Journal of Maps, Taylor & Francis Journals, vol. 10(4), pages 529-537, October.
    3. A. Cancelliere & G. Mauro & B. Bonaccorso & G. Rossi, 2007. "Drought forecasting using the Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(5), pages 801-819, May.
    4. Salami, Habibollah & Shahnooshi, Naser & Thomson, Kenneth J., 2009. "The economic impacts of drought on the economy of Iran: An integration of linear programming and macroeconometric modelling approaches," Ecological Economics, Elsevier, vol. 68(4), pages 1032-1039, February.
    5. Anonymous, 1966. "World Meteorological Organization," International Organization, Cambridge University Press, vol. 20(4), pages 842-844, October.
    6. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    7. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    8. A. Capra & S. Consoli & B. Scicolone, 2013. "Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 601-617, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    2. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    3. Lina Eklund & Jonathan Seaquist, 2015. "Meteorological, agricultural and socioeconomic drought in the Duhok Governorate, Iraqi Kurdistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 421-441, March.
    4. I. García-Garizábal & J. Causapé & R. Abrahao & D. Merchan, 2014. "Impact of Climate Change on Mediterranean Irrigation Demand: Historical Dynamics of Climate and Future Projections," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1449-1462, March.
    5. A. Capra & S. Consoli & B. Scicolone, 2013. "Long-Term Climatic Variability in Calabria and Effects on Drought and Agrometeorological Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 601-617, January.
    6. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    7. Hao Guo & Anming Bao & Tie Liu & Felix Ndayisaba & Daming He & Alishir Kurban & Philippe De Maeyer, 2017. "Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product," Sustainability, MDPI, vol. 9(6), pages 1-21, May.
    8. Zuo, Depeng & Cai, Siyang & Xu, Zongxue & Peng, Dingzhi & Kan, Guangyuan & Sun, Wenchao & Pang, Bo & Yang, Hong, 2019. "Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data," Agricultural Water Management, Elsevier, vol. 222(C), pages 125-138.
    9. Fadhilah Yusof & Foo Hui-Mean & Jamaludin Suhaila & Zulkifli Yusof, 2013. "Characterisation of Drought Properties with Bivariate Copula Analysis," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4183-4207, September.
    10. Veysel Gumus & Oguz Simsek & Yavuz Avsaroglu & Berivan Agun, 2021. "Spatio‐temporal trend analysis of drought in the GAP Region, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1759-1776, November.
    11. Zeyad Tarawneh & Elgaali Elgaali & Moshrik Hamdi, 2009. "Bi-site Analysis of Meteorological Drought Duration: Theoretical Modeling and Application," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 3005-3018, November.
    12. Muhammad Ashraf & Jayant Routray, 2015. "Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 229-254, May.
    13. Anshuka Anshuka & Floris F. van Ogtrop & R. Willem Vervoort, 2019. "Drought forecasting through statistical models using standardised precipitation index: a systematic review and meta-regression analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 955-977, June.
    14. Manish Goyal, 2014. "Statistical Analysis of Long Term Trends of Rainfall During 1901–2002 at Assam, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1501-1515, April.
    15. L. Wang & Q. Zhu & W. Zhao & X. Zhao, 2015. "The drought trend and its relationship with rainfall intensity in the Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 479-495, May.
    16. Ely Yacoub & Gokmen Tayfur, 2017. "Evaluation and Assessment of Meteorological Drought by Different Methods in Trarza Region, Mauritania," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 825-845, February.
    17. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    18. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    19. R. Kripalani & Ashwini Kulkarni & S. Sabade & M. Khandekar, 2003. "Indian Monsoon Variability in a Global Warming Scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(2), pages 189-206, June.
    20. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:20:y:2018:i:4:d:10.1007_s10668-017-9953-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.