IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v77y2015i1p229-254.html
   My bibliography  Save this article

Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan

Author

Listed:
  • Muhammad Ashraf
  • Jayant Routray

Abstract

In this paper, spatial and temporal variability of drought in Balochistan has been investigated using 36 years (1975–2010) of monthly precipitation data recorded at 23 rain gauge stations in the study area. In order to detect and understand precipitation trend on drought severity, Mann–Kendall test is used. Standardized precipitation index is used to compute the severity of drought. Inverse distance weighted method has been used to illustrate the spatial and temporal aspects of drought with varying intensities. In addition, perception and understanding of the 215 farm households about drought are assessed following an in-depth field survey. The results reveal that farmers’ perception regarding climatic variability and drought are in line with the results obtained using the secondary climatic data and information. Mann–Kendall test results indicate that negative trends in precipitation are evident for both annual and seasonal scale for more than 70 % of the stations in Balochistan ranging from 137.2 to 283.4 mm over 36 years, which may affect the drought mitigation, local water resources management and agriculture decision making. Furthermore, frequency of severe and extreme droughts is higher in north-west, from central parts towards south, south-east and some coastal areas when analysed quarterly at 3-month winter season and annually for 12-month dry–wet periods. Central-eastern, south-western, southern and some isolated coastal areas in the south are more susceptible to severe droughts particularly during winter and dry–wet periods because of high variability in precipitation in these areas. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Muhammad Ashraf & Jayant Routray, 2015. "Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 229-254, May.
  • Handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:229-254
    DOI: 10.1007/s11069-015-1593-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-015-1593-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-015-1593-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Sönmez & Ali Kömüscü & Ayhan Erkan & Ertan Turgu, 2005. "An Analysis of Spatial and Temporal Dimension of Drought Vulnerability in Turkey Using the Standardized Precipitation Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 243-264, June.
    2. Desalegn Edossa & Mukand Babel & Ashim Das Gupta, 2010. "Drought Analysis in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1441-1460, May.
    3. Tayeb Raziei & Bahram Saghafian & Ana Paulo & Luis Pereira & Isabella Bordi, 2009. "Spatial Patterns and Temporal Variability of Drought in Western Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(3), pages 439-455, February.
    4. Luxin Zhai & Qi Feng, 2009. "Spatial and temporal pattern of precipitation and drought in Gansu Province, Northwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 1-24, April.
    5. Anonymous, 1966. "World Meteorological Organization," International Organization, Cambridge University Press, vol. 20(4), pages 842-844, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anwar Hussain & Khan Zaib Jadoon & Khalil Ur Rahman & Songhao Shang & Muhammad Shahid & Nuaman Ejaz & Himayatullah Khan, 2023. "Analyzing the impact of drought on agriculture: evidence from Pakistan using standardized precipitation evapotranspiration index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 389-408, January.
    2. Adil Dilawar & Baozhang Chen & Arfan Arshad & Lifeng Guo & Muhammad Irfan Ehsan & Yawar Hussain & Alphonse Kayiranga & Simon Measho & Huifang Zhang & Fei Wang & Xiaohong Sun & Mengyu Ge, 2021. "Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-28, June.
    3. Kamal Ahmed & Nadeem Nawaz & Najeebullah Khan & Balach Rasheed & Amdadullah Baloch, 2021. "Inhomogeneity detection in the precipitation series: case of arid province of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7176-7192, May.
    4. Babak Amirataee & Majid Montaseri, 2017. "The performance of SPI and PNPI in analyzing the spatial and temporal trend of dry and wet periods over Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 89-106, March.
    5. Hao Guo & Anming Bao & Tie Liu & Felix Ndayisaba & Daming He & Alishir Kurban & Philippe De Maeyer, 2017. "Meteorological Drought Analysis in the Lower Mekong Basin Using Satellite-Based Long-Term CHIRPS Product," Sustainability, MDPI, vol. 9(6), pages 1-21, May.
    6. Muhammad Ashraf & Adnan Arshad & Praharsh M. Patel & Adeel Khan & Huma Qamar & Ristina Siti-Sundari & Muhammad Usman Ghani & Ali Amin & Jamilur Rehman Babar, 2021. "Quantifying climate-induced drought risk to livelihood and mitigation actions in Balochistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2127-2151, December.
    7. Xuezhen Zhang & Miao He & Mengxin Bai & Quansheng Ge, 2021. "Meteorological drought and its large-scale climate patterns in each season in Central Asia from 1901 to 2015," Climatic Change, Springer, vol. 166(3), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Buttafuoco & T. Caloiero & R. Coscarelli, 2015. "Analyses of Drought Events in Calabria (Southern Italy) Using Standardized Precipitation Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(2), pages 557-573, January.
    2. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    3. Arash Modaresi Rad & Davar Khalili & Ali Akbar Kamgar-Haghighi & Shahrokh Zand-Parsa & Seyed Adib Banimahd, 2016. "Assessment of seasonal characteristics of streamflow droughts under semiarid conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1541-1564, July.
    4. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    5. Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
    6. Panagiotis Angelidis & Fotios Maris & Nikos Kotsovinos & Vlassios Hrissanthou, 2012. "Computation of Drought Index SPI with Alternative Distribution Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(9), pages 2453-2473, July.
    7. Zhaoqi Zeng & Wenxiang Wu & Zhaolei Li & Yang Zhou & Han Huang, 2019. "Quantitative Assessment of Agricultural Drought Risk in Southeast Gansu Province, Northwest China," Sustainability, MDPI, vol. 11(19), pages 1-21, October.
    8. Maryam Azizabadi Farahani & Davar Khalili, 2013. "Seasonality Characteristics and Spatio-temporal Trends of 7-day Low Flows in a Large, Semi-arid Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(14), pages 4897-4911, November.
    9. Omvir Singh & Divya Saini & Pankaj Bhardwaj, 2021. "Characterization of meteorological drought over a dryland ecosystem in north western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 785-826, October.
    10. Ely Yacoub & Gokmen Tayfur, 2017. "Evaluation and Assessment of Meteorological Drought by Different Methods in Trarza Region, Mauritania," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(3), pages 825-845, February.
    11. Fernando Oñate-Valdivieso & Veronica Uchuari & Arianna Oñate-Paladines, 2020. "Large-Scale Climate Variability Patterns and Drought: A Case of Study in South – America," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 2061-2079, April.
    12. Z. Popova & M. Ivanova & D. Martins & L. Pereira & K. Doneva & V. Alexandrov & M. Kercheva, 2014. "Vulnerability of Bulgarian agriculture to drought and climate variability with focus on rainfed maize systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 865-886, November.
    13. Ahmad Haseeb Payab & Umut Türker, 2018. "Analyzing temporal–spatial characteristics of drought events in the northern part of Cyprus," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(4), pages 1553-1574, August.
    14. Fatih Tosunoglu & Ibrahim Can, 2016. "Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1457-1477, July.
    15. Davar Khalili & Tohid Farnoud & Hamed Jamshidi & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2011. "Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(6), pages 1737-1757, April.
    16. Sumaiya Jarin Ahammed & Rajab Homsi & Najeebullah Khan & Shamsuddin Shahid & Mohammed Sanusi Shiru & Morteza Mohsenipour & Kamal Ahmed & Nadeem Nawaz & Nor Eliza Alias & Ali Yuzir, 2020. "Assessment of changing pattern of crop water stress in Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4619-4637, June.
    17. Mohammad Asadi Zarch & Hossein Malekinezhad & Mohammad Mobin & Mohammad Dastorani & Mohammad Kousari, 2011. "Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3485-3504, October.
    18. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    19. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    20. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:77:y:2015:i:1:p:229-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.