IDEAS home Printed from https://ideas.repec.org/a/spr/custns/v11y2024i1d10.1007_s40547-024-00149-y.html
   My bibliography  Save this article

The Effect of Gambling Outcomes on Casino Return Times with Scalable DDC

Author

Listed:
  • Wayne Taylor

    (Southern Methodist University)

  • Anand Bodapati

    (University of California)

Abstract

Enabled by modern interaction-logging technologies, managers increasingly have access to outcome data from customer interactions. We consider the direct marketing targeting problem in situations where 1) the customer’s outcomes vary randomly and independently from occasion to occasion, 2) the firm has measures of the outcomes experienced by each customer on each occasion, and 3) the firm can customize marketing according to these measures and the customer’s behaviors. A primary contribution of this paper is a framework and methodology to use data on customer outcome data to model a customer’s evolving beliefs related to the firm and how these beliefs combine with marketing to influence purchase behavior. Thereby, this paper allows the manager to assess the marketing response of a customer with any specific outcome and behavior history, which in turn can be used to decide which customers to target for marketing. This research develops a novel, tractable way to estimate and introduce flexible heterogeneity distributions into Bayesian dynamic discrete choice learning models on large datasets. The model is estimated using data from the casino industry, an industry which generates more than $60 billion in U.S. revenues but has surprisingly little academic, econometric research. The counterfactuals suggest that casino profitability can increase substantially when marketing incorporates gamblers’ beliefs and past outcome sequences into the targeting decision.

Suggested Citation

  • Wayne Taylor & Anand Bodapati, 2024. "The Effect of Gambling Outcomes on Casino Return Times with Scalable DDC," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 11(1), pages 1-28, December.
  • Handle: RePEc:spr:custns:v:11:y:2024:i:1:d:10.1007_s40547-024-00149-y
    DOI: 10.1007/s40547-024-00149-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40547-024-00149-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40547-024-00149-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. V. Joseph Hotz & Robert A. Miller & Seth Sanders & Jeffrey Smith, 1994. "A Simulation Estimator for Dynamic Models of Discrete Choice," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 265-289.
    2. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
    3. Peter C. Reiss, 2011. "Structural Workshop Paper --Descriptive, Structural, and Experimental Empirical Methods in Marketing Research," Marketing Science, INFORMS, vol. 30(6), pages 950-964, November.
    4. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    5. Hee Mok Park & Puneet Manchanda, 2015. "When Harry Bet with Sally: An Empirical Analysis of Multiple Peer Effects in Casino Gambling Behavior," Marketing Science, INFORMS, vol. 34(2), pages 179-194, March.
    6. Chib, Siddhartha & Greenberg, Edward, 1996. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometric Theory, Cambridge University Press, vol. 12(3), pages 409-431, August.
    7. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    8. Keane, Michael P & Wolpin, Kenneth I, 1994. "The Solution and Estimation of Discrete Choice Dynamic Programming Models by Simulation and Interpolation: Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 648-672, November.
    9. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    10. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    11. Sridhar Narayanan & Puneet Manchanda, 2009. "Heterogeneous Learning and the Targeting of Marketing Communication for New Products," Marketing Science, INFORMS, vol. 28(3), pages 424-441, 05-06.
    12. S. Sriram & Pradeep K. Chintagunta & Puneet Manchanda, 2015. "Service Quality Variability and Termination Behavior," Management Science, INFORMS, vol. 61(11), pages 2739-2759, November.
    13. Sridhar Narayanan & Puneet Manchanda, 2012. "An empirical analysis of individual level casino gambling behavior," Quantitative Marketing and Economics (QME), Springer, vol. 10(1), pages 27-62, March.
    14. Matthew Osborne, 2011. "Consumer learning, switching costs, and heterogeneity: A structural examination," Quantitative Marketing and Economics (QME), Springer, vol. 9(1), pages 25-70, March.
    15. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    16. Peter E. Rossi, 2014. "Bayesian Non- and Semi-parametric Methods and Applications," Economics Books, Princeton University Press, edition 1, number 10259.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    3. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    4. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    5. Alicia Barroso & Gerard Llobet, 2011. "Advertising and Consumer Awareness of New, Differentiated Products," Working Papers wp2011_1104, CEMFI.
    6. Peter Arcidiacono & Paul B. Ellickson, 2011. "Practical Methods for Estimation of Dynamic Discrete Choice Models," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 363-394, September.
    7. Susumu Imai & Neelam Jain & Andrew Ching, 2009. "Bayesian Estimation of Dynamic Discrete Choice Models," Econometrica, Econometric Society, vol. 77(6), pages 1865-1899, November.
    8. Shervin Shahrokhi Tehrani & Andrew T. Ching, 2024. "A Heuristic Approach to Explore: The Value of Perfect Information," Management Science, INFORMS, vol. 70(5), pages 3200-3224, May.
    9. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    10. Arjen van Lin & Els Gijsbrechts, 2019. "“Hello Jumbo!” The Spatio-Temporal Rollout and Traffic to a New Grocery Chain After Acquisition," Management Science, INFORMS, vol. 67(5), pages 2388-2411, May.
    11. Jason R. Blevins & Ahmed Khwaja & Nathan Yang, 2018. "Firm Expansion, Size Spillovers, and Market Dominance in Retail Chain Dynamics," Management Science, INFORMS, vol. 64(9), pages 4070-4093.
    12. Jie Bai, 2016. "Melons as Lemons: Asymmetric Information, Consumer Learning and Seller Reputation," Natural Field Experiments 00540, The Field Experiments Website.
    13. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    14. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    15. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
    16. Hai Che & Tülin Erdem & T. Sabri Öncü, 2015. "Consumer learning and evolution of consumer brand preferences," Quantitative Marketing and Economics (QME), Springer, vol. 13(3), pages 173-202, September.
    17. van Ewijk, Bernadette J. & Gijsbrechts, Els & Steenkamp, Jan-Benedict E.M., 2022. "The dark side of innovation: How new SKUs affect brand choice in the presence of consumer uncertainty and learning," International Journal of Research in Marketing, Elsevier, vol. 39(4), pages 967-987.
    18. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    19. Zhu, Z.;, 2023. "The Value of Patients: Heterogenous Physician Learning and Generic Drug Diffusion," Health, Econometrics and Data Group (HEDG) Working Papers 23/12, HEDG, c/o Department of Economics, University of York.
    20. Szymanowski, M.G., 2009. "Consumption-based learning about brand quality : Essays on how private labels share and borrow reputation," Other publications TiSEM b12825d8-5e21-4437-adda-b, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:custns:v:11:y:2024:i:1:d:10.1007_s40547-024-00149-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.