IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/9408001.html
   My bibliography  Save this paper

Markov Chain Monte Carlo Simulation Methods in Econometrics

Author

Listed:
  • Siddhartha Chib

    (Washington University)

  • Edward Greenberg

    (Washington University)

Abstract

We present several Markov chain Monte Carlo simulation methods that have been widely used in recent years in econometrics and statistics. Among these is the Gibbs sampler, which has been of particular interest to econometricians. Although the paper summarizes some of the relevant theoretical literature, its emphasis is on the presentation and explanation of applications to important models that are studied in econometrics. We include a discussion of some implementation issues, the use of the methods in connection with the EM algorithm, and how the methods can be helpful in model specification questions. Many of the applications of these methods are of particular interest to Bayesians, but we also point out ways in which frequentist statisticians may find the techniques useful.

Suggested Citation

  • Siddhartha Chib & Edward Greenberg, 1994. "Markov Chain Monte Carlo Simulation Methods in Econometrics," Econometrics 9408001, University Library of Munich, Germany, revised 23 Feb 1995.
  • Handle: RePEc:wpa:wuwpem:9408001
    Note: This is a slightly revised version of that posted earlier. It is a postscript file.
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9408/9408001.pdf
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9408/9408001.ps.gz
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    2. Chib, Siddhartha & Greenberg, Edward, 1994. "Bayes inference in regression models with ARMA (p, q) errors," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 183-206.
    3. Ruud, Paul A., 1991. "Extensions of estimation methods using the EM algorithm," Journal of Econometrics, Elsevier, vol. 49(3), pages 305-341, September.
    4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    5. Chib, Siddhartha, 1993. "Bayes regression with autoregressive errors : A Gibbs sampling approach," Journal of Econometrics, Elsevier, vol. 58(3), pages 275-294, August.
    6. Geweke, John & Keane, Michael P & Runkle, David, 1994. "Alternative Computational Approaches to Inference in the Multinomial Probit Model," The Review of Economics and Statistics, MIT Press, vol. 76(4), pages 609-632, November.
    7. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    8. Koop, Gary, 1994. "Recent Progress in Applied Bayesian Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 8(1), pages 1-34, March.
    9. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    10. Koop, Gary & Osiewalski, Jacek & Steel, Mark F J, 1994. "Bayesian Efficiency Analysis with a Flexible Form: The AIM Cost Function," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(3), pages 339-346, July.
    11. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    12. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    13. McCulloch, Robert & Rossi, Peter E., 1994. "An exact likelihood analysis of the multinomial probit model," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 207-240.
    14. Geweke, J, 1993. "Bayesian Treatment of the Independent Student- t Linear Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages 19-40, Suppl. De.
    15. Chib, Siddhartha, 1996. "Calculating posterior distributions and modal estimates in Markov mixture models," Journal of Econometrics, Elsevier, vol. 75(1), pages 79-97, November.
    16. James Tobin, 1956. "Estimation of Relationships for Limited Dependent Variables," Cowles Foundation Discussion Papers 3R, Cowles Foundation for Research in Economics, Yale University.
    17. Koop, G. & Osiewalski, J. & Steel, M.F.J., 1994. "Bayesian efficiency analysis with a flexible form : The aim cost function," Other publications TiSEM 0dcc8566-0055-4dc1-9c6b-7, Tilburg University, School of Economics and Management.
    18. Chib, Siddhartha, 1992. "Bayes inference in the Tobit censored regression model," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 79-99.
    19. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Stephen & Bélanger, Gilles, 1996. "Échantillonnage de Gibbs et autres applications économétriques des chaînes markoviennes," L'Actualité Economique, Société Canadienne de Science Economique, vol. 72(1), pages 27-49, mars.
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    4. Matteo Manera & Bruno Sitzia, 2005. "Empirical factor demands and flexible functional forms: a bayesian approach," Economic Systems Research, Taylor & Francis Journals, vol. 17(1), pages 57-75.
    5. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    6. Hajivassiliou, Vassilis A. & Ruud, Paul A., 1986. "Classical estimation methods for LDV models using simulation," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 40, pages 2383-2441, Elsevier.
    7. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    8. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    9. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    10. Gabriele Fiorentini & Enrique Sentana & Neil Shephard, 2004. "Likelihood-Based Estimation of Latent Generalized ARCH Structures," Econometrica, Econometric Society, vol. 72(5), pages 1481-1517, September.
    11. Barnett, Glen & Kohn, Robert & Sheather, Simon, 1996. "Bayesian estimation of an autoregressive model using Markov chain Monte Carlo," Journal of Econometrics, Elsevier, vol. 74(2), pages 237-254, October.
    12. Liesenfeld, Roman & Richard, Jean-François, 2008. "Improving MCMC, using efficient importance sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 272-288, December.
    13. Tsionas, Efthymios G., 1998. "Monte Carlo inference in econometric models with symmetric stable disturbances," Journal of Econometrics, Elsevier, vol. 88(2), pages 365-401, November.
    14. Isaiah Hull & Or Sattath & Eleni Diamanti & Göran Wendin, 2024. "Quantum Technology for Economists," Contributions to Economics, Springer, number 978-3-031-50780-9, January.
    15. Koop, Gary & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian efficiency analysis through individual effects: Hospital cost frontiers," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 77-105.
    16. Filardo, Andrew J. & Gordon, Stephen F., 1998. "Business cycle durations," Journal of Econometrics, Elsevier, vol. 85(1), pages 99-123, July.
    17. John Geweke, 1991. "Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments," Staff Report 148, Federal Reserve Bank of Minneapolis.
    18. Lynn Kuo & Jun Ying & Gim S. Seow, 2005. "Forecasting stock prices using a hierarchical Bayesian approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 39-59.
    19. Denis Fougère & Thierry Kamionka, 2003. "Bayesian inference for the mover-stayer model in continuous time with an application to labour market transition data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 697-723.
    20. Vassilis A. Hajivassiliou, 1993. "Simulating Normal Rectangle Probabilities and Their Derivatives: The Effects of Vectorization," Cowles Foundation Discussion Papers 1049, Cowles Foundation for Research in Economics, Yale University.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9408001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.