IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v85y2023i1d10.1007_s10589-023-00454-7.html
   My bibliography  Save this article

A limited memory Quasi-Newton approach for multi-objective optimization

Author

Listed:
  • Matteo Lapucci

    (University of Florence)

  • Pierluigi Mansueto

    (University of Florence)

Abstract

In this paper, we deal with the class of unconstrained multi-objective optimization problems. In this setting we introduce, for the first time in the literature, a Limited Memory Quasi-Newton type method, which is well suited especially in large scale scenarios. The proposed algorithm approximates, through a suitable positive definite matrix, the convex combination of the Hessian matrices of the objectives; the update formula for the approximation matrix can be seen as an extension of the one used in the popular L-BFGS method for scalar optimization. Equipped with a Wolfe type line search, the considered method is proved to be well defined even in the nonconvex case. Furthermore, for twice continuously differentiable strongly convex problems, we state global and R-linear convergence to Pareto optimality of the sequence of generated points. The performance of the new algorithm is empirically assessed by a thorough computational comparison with state-of-the-art Newton and Quasi-Newton approaches from the multi-objective optimization literature. The results of the experiments highlight that the proposed approach is generally efficient and effective, outperforming the competitors in most settings. Moreover, the use of the limited memory method results to be beneficial within a global optimization framework for Pareto front approximation.

Suggested Citation

  • Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
  • Handle: RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00454-7
    DOI: 10.1007/s10589-023-00454-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-023-00454-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-023-00454-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
    2. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    3. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    4. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    5. White, D.J., 1998. "Epsilon-dominating solutions in mean-variance portfolio analysis," European Journal of Operational Research, Elsevier, vol. 105(3), pages 457-466, March.
    6. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    7. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    8. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    9. E. F. Campana & M. Diez & G. Liuzzi & S. Lucidi & R. Pellegrini & V. Piccialli & F. Rinaldi & A. Serani, 2018. "A multi-objective DIRECT algorithm for ship hull optimization," Computational Optimization and Applications, Springer, vol. 71(1), pages 53-72, September.
    10. G. Cocchi & G. Liuzzi & S. Lucidi & M. Sciandrone, 2020. "On the convergence of steepest descent methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 1-27, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Issam A. R. Moghrabi & Basim A. Hassan, 2024. "An Efficient Limited Memory Multi-Step Quasi-Newton Method," Mathematics, MDPI, vol. 12(5), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    2. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    3. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    4. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    5. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    6. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    7. Chen, Wang & Yang, Xinmin & Zhao, Yong, 2023. "Memory gradient method for multiobjective optimization," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    8. Bento, G.C. & Cruz Neto, J.X. & Oliveira, P.R. & Soubeyran, A., 2014. "The self regulation problem as an inexact steepest descent method for multicriteria optimization," European Journal of Operational Research, Elsevier, vol. 235(3), pages 494-502.
    9. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    10. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.
    11. G. Cocchi & G. Liuzzi & S. Lucidi & M. Sciandrone, 2020. "On the convergence of steepest descent methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 1-27, September.
    12. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    13. M. L. N. Gonçalves & L. F. Prudente, 2020. "On the extension of the Hager–Zhang conjugate gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 76(3), pages 889-916, July.
    14. L. F. Prudente & D. R. Souza, 2022. "A Quasi-Newton Method with Wolfe Line Searches for Multiobjective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 1107-1140, September.
    15. Shahabeddin Najafi & Masoud Hajarian, 2023. "Multiobjective Conjugate Gradient Methods on Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1229-1248, June.
    16. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    17. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    18. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    19. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    20. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:1:d:10.1007_s10589-023-00454-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.