IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v105y1998i3p457-466.html
   My bibliography  Save this article

Epsilon-dominating solutions in mean-variance portfolio analysis

Author

Listed:
  • White, D.J.

Abstract

No abstract is available for this item.

Suggested Citation

  • White, D.J., 1998. "Epsilon-dominating solutions in mean-variance portfolio analysis," European Journal of Operational Research, Elsevier, vol. 105(3), pages 457-466, March.
  • Handle: RePEc:eee:ejores:v:105:y:1998:i:3:p:457-466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00056-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruce Faaland, 1974. "An Integer Programming Algorithm for Portfolio Selection," Management Science, INFORMS, vol. 20(10), pages 1376-1384, June.
    2. Jong-Shi Pang, 1980. "A New and Efficient Algorithm for a Class of Portfolio Selection Problems," Operations Research, INFORMS, vol. 28(3-part-ii), pages 754-767, June.
    3. B. Blog & G. van der Hoek & A. H. G. Rinnooy Kan & G. T. Timmer, 1983. "The Optimal Selection of Small Portfolios," Management Science, INFORMS, vol. 29(7), pages 792-798, July.
    4. Andre F. Perold, 1984. "Large-Scale Portfolio Optimization," Management Science, INFORMS, vol. 30(10), pages 1143-1160, October.
    5. D. J. White, 1995. "Finite Horizon Markov Decision Processes with Uncertain Terminal Payoffs," Operations Research, INFORMS, vol. 43(5), pages 862-869, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engau, Alexander & Wiecek, Margaret M., 2007. "Generating [epsilon]-efficient solutions in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1566-1579, March.
    2. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    3. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2013. "On the equivalence of quadratic optimization problems commonly used in portfolio theory," European Journal of Operational Research, Elsevier, vol. 229(3), pages 637-644.
    4. N. Mahdavi-Amiri & F. Salehi Sadaghiani, 2017. "Strictly feasible solutions and strict complementarity in multiple objective linear optimization," 4OR, Springer, vol. 15(3), pages 303-326, September.
    5. C. Gutiérrez & B. Jiménez & V. Novo, 2006. "On Approximate Efficiency in Multiobjective Programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 64(1), pages 165-185, August.
    6. Xiaopeng Zhao & Jen-Chih Yao, 2022. "Linear convergence of a nonmonotone projected gradient method for multiobjective optimization," Journal of Global Optimization, Springer, vol. 82(3), pages 577-594, March.
    7. O. Schütze & C. Hernández & E-G. Talbi & J. Q. Sun & Y. Naranjani & F.-R. Xiong, 2019. "Archivers for the representation of the set of approximate solutions for MOPs," Journal of Heuristics, Springer, vol. 25(1), pages 71-105, February.
    8. Ellen Fukuda & L. Graña Drummond, 2013. "Inexact projected gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 473-493, April.
    9. G. Cocchi & M. Lapucci, 2020. "An augmented Lagrangian algorithm for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 29-56, September.
    10. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    11. Xiaopeng Zhao & Markus A. Köbis & Yonghong Yao & Jen-Chih Yao, 2021. "A Projected Subgradient Method for Nondifferentiable Quasiconvex Multiobjective Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 82-107, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xili & Zhang, Weiguo & Xiao, Weilin, 2013. "Multi-period portfolio optimization under possibility measures," Economic Modelling, Elsevier, vol. 35(C), pages 401-408.
    2. Chen, Wei & Zhang, Wei-Guo, 2010. "The admissible portfolio selection problem with transaction costs and an improved PSO algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2070-2076.
    3. Zhang, Wei-Guo & Zhang, Xi-Li & Xiao, Wei-Lin, 2009. "Portfolio selection under possibilistic mean-variance utility and a SMO algorithm," European Journal of Operational Research, Elsevier, vol. 197(2), pages 693-700, September.
    4. Zhang, Wei-Guo & Wang, Ying-Luo, 2008. "An analytic derivation of admissible efficient frontier with borrowing," European Journal of Operational Research, Elsevier, vol. 184(1), pages 229-243, January.
    5. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    6. Li, Ting & Zhang, Weiguo & Xu, Weijun, 2015. "A fuzzy portfolio selection model with background risk," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 505-513.
    7. Ruey-Chyn Tsaur, 2015. "Fuzzy portfolio model with fuzzy-input return rates and fuzzy-output proportions," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(3), pages 438-450, February.
    8. Li, Ting & Zhang, Weiguo & Xu, Weijun, 2013. "Fuzzy possibilistic portfolio selection model with VaR constraint and risk-free investment," Economic Modelling, Elsevier, vol. 31(C), pages 12-17.
    9. Tsaur, Ruey-Chyn, 2013. "Fuzzy portfolio model with different investor risk attitudes," European Journal of Operational Research, Elsevier, vol. 227(2), pages 385-390.
    10. Kuen-Suan Chen & Ruey-Chyn Tsaur & Nei-Chih Lin, 2022. "Dimensions Analysis to Excess Investment in Fuzzy Portfolio Model from the Threshold of Guaranteed Return Rates," Mathematics, MDPI, vol. 11(1), pages 1-13, December.
    11. Kuen-Suan Chen & Yin-Yin Huang & Ruey-Chyn Tsaur & Nei-Yu Lin, 2023. "Fuzzy Portfolio Selection in the Risk Attitudes of Dimension Analysis under the Adjustable Security Proportions," Mathematics, MDPI, vol. 11(5), pages 1-16, February.
    12. Sankaran, Jayaram K. & Patil, Ajay A., 1999. "On the optimal selection of portfolios under limited diversification," Journal of Banking & Finance, Elsevier, vol. 23(11), pages 1655-1666, November.
    13. Bo Zhang & Jin Peng & Shengguo Li, 2015. "Uncertain programming models for portfolio selection with uncertain returns," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(14), pages 2510-2519, October.
    14. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    15. Walter Murray & Howard Shek, 2012. "A local relaxation method for the cardinality constrained portfolio optimization problem," Computational Optimization and Applications, Springer, vol. 53(3), pages 681-709, December.
    16. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2024. "Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks," Papers 2407.15532, arXiv.org.
    17. Immanuel Bomze & Chen Ling & Liqun Qi & Xinzhen Zhang, 2012. "Standard bi-quadratic optimization problems and unconstrained polynomial reformulations," Journal of Global Optimization, Springer, vol. 52(4), pages 663-687, April.
    18. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    19. Yin-Yin Huang & Ruey-Chyn Tsaur & Nei-Chin Huang, 2022. "Sustainable Fuzzy Portfolio Selection Concerning Multi-Objective Risk Attitudes in Group Decision," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
    20. Hubáček, Ondřej & Šír, Gustav, 2023. "Beating the market with a bad predictive model," International Journal of Forecasting, Elsevier, vol. 39(2), pages 691-719.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:105:y:1998:i:3:p:457-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.