IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i2d10.1007_s10589-017-9953-2.html
   My bibliography  Save this article

An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints

Author

Listed:
  • G. Cocchi

    (Università di Firenze)

  • G. Liuzzi

    (Consiglio Nazionale delle Ricerche)

  • A. Papini

    (Università di Firenze)

  • M. Sciandrone

    (Università di Firenze)

Abstract

This paper is concerned with the definition of new derivative-free methods for box constrained multiobjective optimization. The method that we propose is a non-trivial extension of the well-known implicit filtering algorithm to the multiobjective case. Global convergence results are stated under smooth assumptions on the objective functions. We also show how the proposed method can be used as a tool to enhance the performance of the Direct MultiSearch (DMS) algorithm. Numerical results on a set of test problems show the efficiency of the implicit filtering algorithm when used to find a single Pareto solution of the problem. Furthermore, we also show through numerical experience that the proposed algorithm improves the performance of DMS alone when used to reconstruct the entire Pareto front.

Suggested Citation

  • G. Cocchi & G. Liuzzi & A. Papini & M. Sciandrone, 2018. "An implicit filtering algorithm for derivative-free multiobjective optimization with box constraints," Computational Optimization and Applications, Springer, vol. 69(2), pages 267-296, March.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:2:d:10.1007_s10589-017-9953-2
    DOI: 10.1007/s10589-017-9953-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9953-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9953-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    2. Jörg Fliege & Benar Fux Svaiter, 2000. "Steepest descent methods for multicriteria optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 51(3), pages 479-494, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. G. Cocchi & G. Liuzzi & S. Lucidi & M. Sciandrone, 2020. "On the convergence of steepest descent methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 77(1), pages 1-27, September.
    2. C. P. Brás & A. L. Custódio, 2020. "On the use of polynomial models in multiobjective directional direct search," Computational Optimization and Applications, Springer, vol. 77(3), pages 897-918, December.
    3. Matteo Lapucci & Pierluigi Mansueto, 2023. "A limited memory Quasi-Newton approach for multi-objective optimization," Computational Optimization and Applications, Springer, vol. 85(1), pages 33-73, May.
    4. Jean Bigeon & Sébastien Le Digabel & Ludovic Salomon, 2021. "DMulti-MADS: mesh adaptive direct multisearch for bound-constrained blackbox multiobjective optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 301-338, June.
    5. Wang Chen & Xinmin Yang & Yong Zhao, 2023. "Conditional gradient method for vector optimization," Computational Optimization and Applications, Springer, vol. 85(3), pages 857-896, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    2. Ellen H. Fukuda & L. M. Graña Drummond & Fernanda M. P. Raupp, 2016. "An external penalty-type method for multicriteria," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 493-513, July.
    3. Thai Chuong, 2013. "Newton-like methods for efficient solutions in vector optimization," Computational Optimization and Applications, Springer, vol. 54(3), pages 495-516, April.
    4. Morovati, Vahid & Pourkarimi, Latif, 2019. "Extension of Zoutendijk method for solving constrained multiobjective optimization problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 44-57.
    5. Konstantin Sonntag & Bennet Gebken & Georg Müller & Sebastian Peitz & Stefan Volkwein, 2024. "A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 455-487, October.
    6. Miglierina, E. & Molho, E. & Recchioni, M.C., 2008. "Box-constrained multi-objective optimization: A gradient-like method without "a priori" scalarization," European Journal of Operational Research, Elsevier, vol. 188(3), pages 662-682, August.
    7. Erik Alex Papa Quiroz & Nancy Baygorrea Cusihuallpa & Nelson Maculan, 2020. "Inexact Proximal Point Methods for Multiobjective Quasiconvex Minimization on Hadamard Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 186(3), pages 879-898, September.
    8. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    9. Kanako Mita & Ellen H. Fukuda & Nobuo Yamashita, 2019. "Nonmonotone line searches for unconstrained multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 75(1), pages 63-90, September.
    10. Miglierina Enrico & Molho Elena & Recchioni Maria Cristina, 2006. "Box-constrained vector optimization: a steepest descent method without “a priori” scalarization," Economics and Quantitative Methods qf0603, Department of Economics, University of Insubria.
    11. M. L. N. Gonçalves & F. S. Lima & L. F. Prudente, 2022. "Globally convergent Newton-type methods for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 83(2), pages 403-434, November.
    12. Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
    13. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    14. Brian Dandurand & Margaret M. Wiecek, 2016. "Quadratic scalarization for decomposed multiobjective optimization," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 1071-1096, October.
    15. Gonçalves, M.L.N. & Lima, F.S. & Prudente, L.F., 2022. "A study of Liu-Storey conjugate gradient methods for vector optimization," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    16. J. Y. Bello Cruz & G. Bouza Allende, 2014. "A Steepest Descent-Like Method for Variable Order Vector Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(2), pages 371-391, August.
    17. X. M. Wang & J. H. Wang & C. Li, 2023. "Convergence of Inexact Steepest Descent Algorithm for Multiobjective Optimizations on Riemannian Manifolds Without Curvature Constraints," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 187-214, July.
    18. Andrea Manno & Laura Palagi & Simone Sagratella, 2018. "Parallel decomposition methods for linearly constrained problems subject to simple bound with application to the SVMs training," Computational Optimization and Applications, Springer, vol. 71(1), pages 115-145, September.
    19. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    20. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:2:d:10.1007_s10589-017-9953-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.